留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流向变换-低温等离子体反应系统用于VOCs去除及热量分布研究

梁文俊 武红梅 李坚 何洪

梁文俊, 武红梅, 李坚, 何洪. 流向变换-低温等离子体反应系统用于VOCs去除及热量分布研究[J]. 环境工程技术学报, 2018, 8(4): 373-380. doi: 10.3969/j.issn.1674-991X.2018.04.049
引用本文: 梁文俊, 武红梅, 李坚, 何洪. 流向变换-低温等离子体反应系统用于VOCs去除及热量分布研究[J]. 环境工程技术学报, 2018, 8(4): 373-380. doi: 10.3969/j.issn.1674-991X.2018.04.049
LIANG Wenjun, WU Hongmei, LI Jian, HE Hong. Removal of VOCs and heat distribution in a flow reversal plasma reaction system[J]. Journal of Environmental Engineering Technology, 2018, 8(4): 373-380. doi: 10.3969/j.issn.1674-991X.2018.04.049
Citation: LIANG Wenjun, WU Hongmei, LI Jian, HE Hong. Removal of VOCs and heat distribution in a flow reversal plasma reaction system[J]. Journal of Environmental Engineering Technology, 2018, 8(4): 373-380. doi: 10.3969/j.issn.1674-991X.2018.04.049

流向变换-低温等离子体反应系统用于VOCs去除及热量分布研究

doi: 10.3969/j.issn.1674-991X.2018.04.049
详细信息
    作者简介:

    作者简介:梁文俊(1978—),男,教授,主要从事大气污染控制理论、技术和工程应用方面的研究

  • 中图分类号: X701

Removal of VOCs and heat distribution in a flow reversal plasma reaction system

  • 摘要: 将流向变换技术用于低温等离子体反应系统,考察了其对低温等离子体反应过程的影响,以放电参数(场强、频率)和系统运行参数(换向周期、接地极匝数、气体流速)为影响因素,探究了流向变换对低温等离子体系统温升(ΔT)和放电能量密度(SED)的影响,考察了该技术用于去除VOCs的情况。结果表明:在换向周期为8 min,场强为13.1 kV/cm,频率为150 Hz,接地极匝数为7匝,气体流速为14 cm/s条件下,ΔT最高可达187.3 ℃,SED最高可达284.4 J/L;等离子体放电区ΔT最高,出口处ΔT较低;蓄热段ΔT随流向变换发生周期性变化,其变化周期与反应系统的变换周期一致;将流向变换-低温等离子体反应系统应用于甲苯的去除,可以显著提升甲苯的降解率,在一定范围内,有利于提高系统的能量效率。

     

  • [1] 梁文俊, 郭书清, 武红梅 , 等. 非热等离子体协同Mn-Ce/La/γ-Al2O3催化剂去除甲苯[J]. 化工学报, 2017,68(7):2755-2762.
    doi: 10.11949/j.issn.0438-1157.20161656

    LIANG W J, GUO S Q, WU H M , et al. Removal of toluene using non-thermal plasma coupled with Mn-Ce/La/γ-Al2O3catalysts[J]. Journal of Chemical Industry and Engineering, 2017,68(7):2755-2762. doi: 10.11949/j.issn.0438-1157.20161656
    [2] 竹涛, 万艳东, 李坚 . 低温等离子体-催化耦合降解甲苯的研究及机理探讨[J]. 高校化学工程学报, 2011,25(1):161-167.

    ZHU T, WAN Y D, LI J . Study on decomposition mechanism of toluene by non-thermal plasmacoupled with catalysis[J]. Journal of Chemical Engineering of Chinese Universities, 2011,25(1):161-167.
    [3] VANDENBROUCKE A M, DINH M T N, NUNS N ,et al. Combination of non-thermal plasma and Pd/LaMnO3 for dilute trichloroethylene abatement[J]. Chemical Engineering Journal, 2016,283:668-675.
    doi: 10.1016/j.cej.2015.07.089
    [4] MEI D H, ZHU X B, WU C F , et al. Plasma-photocatalytic conversion of CO2 at low temperatures:understanding the synergistic effect of plasma-catalysis[J]. Applied Catalysis B:Environmental, 2016,182:525-532.
    doi: 10.1016/j.apcatb.2015.09.052
    [5] 杨茜, 易红宏, 唐晓龙 , 等. 低温等离子体处理工业废气中甲苯的研究进展[J]. 安全与环境工程, 2017,24(1):77-83.
    doi: 10.13578/j.cnki.issn.1671-1556.2017.01.013

    YANG X, YI H H, TANG X L , et al. Research progress in treatment of toluene in industrial waste gas by non-thermal plasmatechnology[J]. Safety and Environmental Engineering, 2017,24(1):77-83. doi: 10.13578/j.cnki.issn.1671-1556.2017.01.013
    [6] WANG T, CHEN S, WANG H Q . In-plasma catalytic degradation of toluene over different MnO2 polymorphs and study of reaction mechanism[J]. Chinese Journal of Catalysis, 2017,38(5):793-804.
    doi: 10.1016/S1872-2067(17)62808-0
    [7] HUANG H B, YE D Q . Combination of photocatalysis downstream the non-thermal plasma reactor for oxidation of gas-phase toluene[J]. Journal of Hazardous Materials, 2009,171(1/2/3):535-541.
    doi: 10.1016/j.jhazmat.2009.06.033 pmid: 19604627
    [8] COTRELL F G . Purifying gases and apparatus therefor:US,121,733.2[P]. 1938-06-21.
    [9] 李霄宇, 朱吉钦, 贺振富 , 等. 丙烯腈尾气段间取热式流向变换催化燃烧[J]. 化学反应工程与工艺, 2008,24(4):305-311.

    LI X Y, ZHU J Q, HE Z F , et al. Catalytic combustion of acrylonitrile off-gas in a reverse flow reactor with a heat extractor[J]. Chemical Reaction Engineering and Technology, 2008,24(4):305-311.
    [10] 雷泽, 弓卓翡 . 低浓度甲烷流向变换催化燃烧特性研究:基于La0.8 Sr0.2Mn0.5Al0.5O3-δ/堇青石整体式催化剂[J]. 矿业科学学报, 2017,2(6):604-612.

    LEI Z, GONG Z F . The characteristics of reverse flow reactor for catalytic combustion of lean methane:based on La0.8Sr0.2Mn0.5Al0.5O3-δ/cordierite monolithic catalysts[J]. Journal of Mining Science and Technology, 2017,2(6):604-612.
    [11] QIANG L, GENG C, YING Y Z , et al. Resonance response in the catalytic combustion of methane and propane binary mixture in reverse-flow reactor[J]. Chemical Engineering Journal, 2018,345:375-388.
    doi: 10.1016/j.cej.2018.03.165
    [12] 梁文俊, 李玉泽, 郑川 , 等. 用于低浓度一氧化碳去除的流向变换系统[J]. 北京工业大学学报, 2016: 42(9):1428-1434.
    doi: 10.11936/bjutxb2015070095

    LIANG W J, LI Y Z, ZHENG C , et al. Reverse-flow reactor in removal of lean carbon monoxide[J]. Journal of Beijing University of Technology, 2016: 42(9):1428-1434. doi: 10.11936/bjutxb2015070095
    [13] 石秀娟 . 催化氧化技术用于低浓度甲烷的去除研究[D]. 北京:北京工业大学, 2017.

    SHI X J . Removal of low concentration of methane with catalytic oxidation technology[D]. Beijing:Beijing University of Technology, 2017.
    [14] 张佳瑾 . 低浓度甲烷流向变换催化燃烧实验研究及模型化[D]. 北京:北京化工大学, 2012.

    ZHANG J J . Environmental study modelling of reverse flow catalytic combustion process for lean methane emissions[D]. Beijing:Beijing University of Chemical Technology, 2012.
    [15] 区瑞锟 . 介质阻挡放电等离子体中的活性粒子及其降解甲醛的研究[D]. 广州:华南理工大学, 2011.

    QU R K . Active species produced by dielectric barrier discharge and their application to formaldehyde degradation[D]. Guangzhou:South China University of Technology, 2011.
  • 加载中
计量
  • 文章访问数:  563
  • HTML全文浏览量:  70
  • PDF下载量:  485
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-01
  • 刊出日期:  2018-07-20

目录

    /

    返回文章
    返回