留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水环境溶解性有机质溯源与表征技术研究进展

吴函鸿 高思佳 刘婷婷 储昭升

吴函鸿,高思佳,刘婷婷,等.水环境溶解性有机质溯源与表征技术研究进展[J].环境工程技术学报,2024,14(2):474-486 doi: 10.12153/j.issn.1674-991X.20230651
引用本文: 吴函鸿,高思佳,刘婷婷,等.水环境溶解性有机质溯源与表征技术研究进展[J].环境工程技术学报,2024,14(2):474-486 doi: 10.12153/j.issn.1674-991X.20230651
WU H H,GAO S J,LIU T T,et al.Research progress on tracing and characterization of dissolved organic matter in water environment[J].Journal of Environmental Engineering Technology,2024,14(2):474-486 doi: 10.12153/j.issn.1674-991X.20230651
Citation: WU H H,GAO S J,LIU T T,et al.Research progress on tracing and characterization of dissolved organic matter in water environment[J].Journal of Environmental Engineering Technology,2024,14(2):474-486 doi: 10.12153/j.issn.1674-991X.20230651

水环境溶解性有机质溯源与表征技术研究进展

doi: 10.12153/j.issn.1674-991X.20230651
基金项目: 国家重点研发计划重点专项 (2021YFC3201003)
详细信息
    作者简介:

    吴函鸿(2000—),男,硕士研究生,主要从事湖泊溶解性有机质过程研究,wuhh2000@163.com

    通讯作者:

    储昭升(1973—),男,研究员,博士,长期从事湖泊保护与富营养化研究,chuzs@craes.org.cn

  • 中图分类号: X52

Research progress on tracing and characterization of dissolved organic matter in water environment

  • 摘要:

    水体中的溶解性有机质(DOM)来源广泛,成分复杂,可参与水中重金属迁移转化和生物地球化学循环过程,采用相应技术手段识别水体DOM来源,实现对DOM组分和性质的表征,对理解其生态环境效应具有指示意义。简要介绍了水环境中DOM的组成、特点及当前的研究热点,重点总结归纳了紫外-可见吸收光谱、三维荧光光谱、稳定同位素、生物标志物以及傅里叶变换离子回旋共振质谱等技术方法在水环境DOM溯源与表征中的应用特点、重要表征参数、影响因素和使用局限性。结果表明:紫外-可见吸收光谱和三维荧光光谱均有操作便捷、分析速度快、不破坏样品等优点,但二者对DOM表征的侧重点不同;稳定同位素技术重点关注DOM中的碳、氮等元素同位素组成及含量,生物标志物可记录DOM分子结构的信息,而傅里叶变换离子回旋共振质谱则是从分子级别对DOM进行表征。以上各技术对DOM的研究均有广阔的应用前景,但是由于DOM成分和组成元素的复杂性以及每种技术本身的局限性,多种技术的联合使用已成为水体DOM表征与解析的发展趋势。在此基础上阐述了多技术联用条件、目标和优点,归纳了现有研究中基于多技术联用的水环境DOM研究进展及研究案例,最后展望了DOM溯源与表征的未来发展方向。

     

  • 图  1  DOM与CDOM、FDOM之间的关系[15-16]

    Figure  1.  Relationship diagram between DOM, CDOM and FDOM

    图  2  EEMs-PARAFAC解析过程

    Figure  2.  Complete process for EEMs-PARAFAC analysis

    图  3  DOM潜在来源的碳、氮稳定同位素范围[47]

    Figure  3.  Ranges of carbon, nitrogen isotopic abundance for different DOM endmembers

    图  4  基于Van Krevelen图的DOM物质类型划分[68]

    Figure  4.  Classification of DOM material types based on Van Krevelen diagram

    表  1  紫外-可见吸收光谱特征参数[25-26]

    Table  1.   UV-visible absorption spectral characteristic parameters

    特征参数 计算公式 含义
    吸收系数(αλ αλ=$ \dfrac{2.303\times A_\mathit{\lambda}}{l}\ $ 与CDOM浓度相关
    单位有机碳含量吸光度(SUVA254 SUVA254 =$ \dfrac{{A}_{254}}{c\left(\mathrm{D}\mathrm{O}\mathrm{C}\right)} $ 代表腐殖化程度,与DOM中芳香族
    化合物浓度呈正相关
    光谱斜率比(SR SR=$ \dfrac{S_{275\sim295}}{S_{350\sim400}} $ 与DOM的平均分子量和芳香性呈负相关
    吸收系数比 E2:E3=α250:α365,为250和365 nm处的吸收系数比 以3.5为界限,小于3.5以胡敏酸为主,
    大于3.5以富里酸为主
    E2:E4 =α254:α436,为254和436 nm处的吸收系数比 指示有机物来源,低值为外源,高值为内源
    E4:E6=α465:α665,为465和665 nm处的吸收系数比 与苯环碳聚合度呈负相关
      注:λ为波长;A(λ)为吸光度;l为光程;A254为254 nm处吸光度;c(DOC)为DOC浓度;S275~295为275~295 nm范围内的吸收斜率;S350~400为350~400 nm范围内的吸收斜率。
    下载: 导出CSV

    表  2  三维荧光相关的光学指标[31-33]

    Table  2.   Optical indices related to three-dimensional fluorescence

    光学指标 计算方法 表征含义
    荧光指数 (FI) FI=$ \dfrac{F_{\lambda_{\mathrm{em}}=450\ \mathrm{nm}}}{F_{\lambda_{\mathrm{em}=500\ \mathrm{nm}}}},\lambda_{\mathrm{e}\mathrm{x}}=370\; \mathrm{n}\mathrm{m} $ 分区段指示有机质来源
    腐殖化指数 (HIX) $ \mathrm{HIX}=\dfrac{\displaystyle\int_{435\mathrm{~nm}}^{480\mathrm{~nm}}F_{\lambda_{\mathrm{em}}}}{\displaystyle\int_{300\mathrm{~nm}}^{345\mathrm{~nm}}F_{\lambda_{\mathrm{em}}}},\; \; \lambda_{\mathrm{ex}}=254\mathrm{~nm} $ 表征有机质的腐殖化程度,HIX 越高则说明
    腐殖化程度越高,有机质越稳定
    自生源指数 (BIX) BIX =$ \dfrac{F_{\lambda\mathrm{_{em}}=380\; \mathrm{n}\mathrm{m}}}{F_{\lambda_{\mathrm{em}=430\; \mathrm{n}\mathrm{m}}}},\lambda_{\mathrm{e}\mathrm{x}}=310\; \mathrm{n}\mathrm{m} $ BIX越高,表明DOM降解程度越高,越容易生成自生源产物
    新鲜度指数(β:α $ \beta:\alpha=\dfrac{F_{\lambda_{\mathrm{em}}=380\mathrm{~nm}}}{\displaystyle\int_{420\mathrm{~nm}}^{435\mathrm{~nm}}\; F_{\lambda_{\mathrm{em}}}},\; \; \lambda_{\mathrm{ex}}=310\mathrm{~nm} $ 表示新生成DOM在总体DOM中所占的比例
    Fn(280) Fn(280)是Ex=280 nm时,Em在340~360 nm处的最大荧光强度 代表类蛋白物质的相对浓度水平
    Fn(335) Fn(355)是Ex=355 nm时,Em在440~470 nm处的最大荧光强度 代表类腐殖物质的相对浓度水平
      注:$ {\lambda }_{\mathrm{e}\mathrm{x}} $表示激发波长;$ {F}_{{\lambda }_{\mathrm{e}\mathrm{m}}} $表示发射波长对应的荧光强度;$\displaystyle \int_a^bF_{\lambda_{\mathrm{e}\mathrm{m}}} $表示发射波长在a~b波段内的光谱面积。
    下载: 导出CSV

    表  3  DOM溯源与表征分析技术对比

    Table  3.   Comparisons of DOM traceability and representation analysis techniques

    技术类型表征能力优点局限
    UV-Vis追踪DOM来源和反应性,实现对DOM的定性、定量分析和简单的结构分析操作便捷,分析速度快,仪器普及率高且不破坏样品分析能力有限,灵敏度略低,存在光散射现象
    EEMs追溯有机质来源和荧光物质类型操作便捷,分析速度快,不破坏样品分析能力有限,受内滤效应干扰,结果易受到多种因素的影响
    稳定同位素
    质谱
    表征物质C、N等元素的同位素组成及含量,定量DOM来源表征DOM的范围广,可得到较为精确的定性和定量分析结果缺乏统一的定量解析模型,解析结果受到端元种类、数量和同位素分馏等多种因素的影响
    生物标志物记录DOM分子结构信息,指示有机质输入、来源及传递过程灵敏度高,生物标志物的种类多样且较为稳定受多种环境因素的影响,同一种生物标志物可能来自不同门类生物
    FT-ICR-MS获得极高分辨率质谱图,表征DOM分子级别的结构信息超高分辨率、超高质量精度和超高灵敏度样品前处理复杂,获得的DOM碎片化信息有限,数据分析过程复杂,仪器使用成本高
    下载: 导出CSV

    表  4  多技术联用的水环境DOM研究案例

    Table  4.   Cases of multi-technique combined research on DOM

    联用技术 研究重点 数据来源
    UV-Vis、EEMs 中国云贵高原多个湖泊CDOM吸光
    与荧光特征及其组成和来源
    文献[79]
    UV-Vis、EEMs-SOM 中国华东地区城市河流中DOM
    浓度和成分的季节变化特征
    文献[80]
    UV-Vis、EEMs、
    FT-IR
    中国长三角地区农村生活污水DOM
    特征及组分的转化情况
    文献[81]
    EEMs、δ13C 澳大利亚某近海海湾DOM来源解析 文献[82]
    EEMs、δ13C、
    生物标志物
    中国三峡水库支流藻华暴发期
    DOM浓度、组成及来源分析
    文献[83]
    EEMs、δ 13C、
    δ 15N、δ 18O
    韩国金刚江中东部的河流-流域系统
    在季风前期、季风暴雨期和季风后期DOM来源与变化
    文献[84]
    EEMs、FT-ICR-MS 中国某市政污水处理厂A2O工艺
    处理过程中DOM变化
    文献[85]
    EEMs、FT-ICR-MS 中国鄱阳湖DOM光学性质和
    分子特征的空间变化
    文献[86]
    FT-ICR-MS、δ13C、EEMs、UV-Vis 美国Delaware海湾DOM
    来源和性质的季节变化
    文献[87]
    FT-ICR-MS、δ13C 、13C-NMR 中国青藏高原地区盐湖及入湖河流
    DOM起源、组成和循环分析
    文献[88]
    FT-ICR-MS、SEC、EEMs、1H-NMR 美国Hillsboro运河DOM分子组成的
    时间演变和结构特征的变化
    文献[89]
    下载: 导出CSV
  • [1] ZHANG X L, YU H B, GAO H J, et al. Explore variations of DOM components in different landcover areas of riparian zone by EEM-PARAFAC and partial least squares structural equation model[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2023,291:122300. doi: 10.1016/j.saa.2022.122300
    [2] ZARK M, DITTMAR T. Universal molecular structures in natural dissolved organic matter[J]. Nature Communications,2018,9:3178. doi: 10.1038/s41467-018-05665-9
    [3] BEGUM M S, PARK H Y, SHIN H S, et al. Separately tracking the sources of hydrophobic and hydrophilic dissolved organic matter during a storm event in an agricultural watershed[J]. Science of the Total Environment,2023,873:162347. doi: 10.1016/j.scitotenv.2023.162347
    [4] ZHANG X L, NIE L, GAO H J, et al. Applying second derivative synchronous fluorescence spectroscopy combined with Gaussian band fitting to trace variations of DOM fractions along an urban river[J]. Ecological Indicators,2023,146:109872. doi: 10.1016/j.ecolind.2023.109872
    [5] HANSEN A M, KRAUS T E C, PELLERIN B A, et al. Optical properties of dissolved organic matter (DOM): effects of biological and photolytic degradation[J]. Limnology and Oceanography,2016,61(3):1015-1032. doi: 10.1002/lno.10270
    [6] NEBBIOSO A, PICCOLO A. Molecular characterization of dissolved organic matter (DOM): a critical review[J]. Analytical and Bioanalytical Chemistry,2013,405(1):109-124. doi: 10.1007/s00216-012-6363-2
    [7] ZHAO P P, DU Z L, FU Q L, et al. Molecular composition and chemodiversity of dissolved organic matter in wastewater sludge via Fourier transform ion cyclotron resonance mass spectrometry: effects of extraction methods and electrospray ionization modes[J]. Water Research,2023,232:119687. doi: 10.1016/j.watres.2023.119687
    [8] KALLE K, WATTENBERG H. Über den kupfergehalt des oZeanwassers[J]. Naturwissenschaften,1938,26(38):630-631.
    [9] KALLE G P, AGRAWAL A K, SIVASUBRAMANIAN P. Mutation to ultraviolet resistance and filament formation in bacteria[J]. Indian Journal of Genetics and Plant Breeding,1966,26:431.
    [10] GUO W, YANG F, LI Y P, et al. New insights into the source of decadal increase in chemical oxygen demand associated with dissolved organic carbon in Dianchi Lake[J]. Science of the Total Environment,2017,603/604:699-708. doi: 10.1016/j.scitotenv.2017.02.024
    [11] IFON B E, ADYARI B, HOU L Y, et al. Insight into variation and controlling factors of dissolved organic matter between urban rivers undergoing different anthropogenic influences[J]. Journal of Environmental Management,2023,326:116737. doi: 10.1016/j.jenvman.2022.116737
    [12] KELSO J E, BAKER M A. Organic matter sources and composition in four watersheds with mixed land cover[J]. Hydrobiologia,2022,849(12):2663-2682. doi: 10.1007/s10750-022-04884-y
    [13] MU G Y, JI M C, LI S J. Evaluation of CDOM sources and their links with antibiotics in the rivers dividing China and North Korea using fluorescence spectroscopy[J]. Environmental Science and Pollution Research,2018,25(27):27545-27560. doi: 10.1007/s11356-018-2773-9
    [14] 朱宁美, 崔兵, 刘东萍, 等. 典型城市河流底泥溶解性有机质与重金属响应机制研究[J]. 环境工程技术学报,2021,11(6):1092-1101. doi: 10.12153/j.issn.1674-991X.20210093

    ZHU N M, CUI B, LIU D P, et al. Response mechanism of dissolved organic matter and heavy metals in sediments of typical urban rivers[J]. Journal of Environmental Engineering Technology,2021,11(6):1092-1101. doi: 10.12153/j.issn.1674-991X.20210093
    [15] STEDMON C A, NELSON N B. The optical properties of DOM in the ocean[M]//Biogeochemistry of marine dissolved organic matter. Amsterdam: Elsevier, 2015: 481-508.
    [16] 王安月. 夏季长江口水体可溶有机质的组成及其空间展布特征[D]. 杭州: 浙江大学, 2021.
    [17] 言宗骋, 高红杰, 郭旭晶, 等. 蘑菇湖沉积物间隙水溶解性有机质紫外可见光谱研究[J]. 环境工程技术学报,2019,9(6):685-691. doi: 10.12153/j.issn.1674-991X.2019.05.160

    YAN Z C, GAO H J, GUO X J, et al. Study on UV-vis spectra of dissolved organic matter from sediment interstitial water in Moguhu Lake[J]. Journal of Environmental Engineering Technology,2019,9(6):685-691. doi: 10.12153/j.issn.1674-991X.2019.05.160
    [18] HERZSPRUNG P, von TÜMPLING W, HERTKORN N, et al. Variations of DOM quality in inflows of a drinking water reservoir: linking of van Krevelen diagrams with EEMF spectra by rank correlation[J]. Environmental Science & Technology,2012,46(10):5511-5518.
    [19] HELMS J R, MAO J D, STUBBINS A, et al. Loss of optical and molecular indicators of terrigenous dissolved organic matter during long-term photobleaching[J]. Aquatic Sciences,2014,76(3):353-373. doi: 10.1007/s00027-014-0340-0
    [20] BAO H Y, QIAO J, HUANG D K, et al. Molecular level characterization of the biolability of rainwater dissolved organic matter[J]. Science of the Total Environment,2023,862:160709. doi: 10.1016/j.scitotenv.2022.160709
    [21] 芦晓峰, 朱山林, 张岚, 等. 乌伦古湖冰封期溶解性有机质分布特征及来源解析[J]. 环境工程技术学报,2023,13(5):1798-1807. doi: 10.12153/j.issn.1674-991X.20221092

    LU X F, ZHU S L, ZHANG L, et al. Dissolved organic matter distribution characteristics and source analysis of Ulungur Lake during ice sealing period[J]. Journal of Environmental Engineering Technology,2023,13(5):1798-1807. doi: 10.12153/j.issn.1674-991X.20221092
    [22] FERRARI G M. The relationship between chromophoric dissolved organic matter and dissolved organic carbon in the European Atlantic coastal area and in the West Mediterranean Sea (Gulf of Lions)[J]. Marine Chemistry,2000,70(4):339-357. doi: 10.1016/S0304-4203(00)00036-0
    [23] BREZONIK P L, OLMANSON L G, FINLAY J C, et al. Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters[J]. Remote Sensing of Environment,2015,157:199-215. doi: 10.1016/j.rse.2014.04.033
    [24] HELMS J R, STUBBINS A, RITCHIE J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography,2008,53(3):955-969. doi: 10.4319/lo.2008.53.3.0955
    [25] LI P H, HUR J. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: a review[J]. Critical Reviews in Environmental Science and Technology,2017,47(3):131-154. doi: 10.1080/10643389.2017.1309186
    [26] CHEN W, QIAN C, ZHOU K G, et al. Molecular spectroscopic characterization of membrane fouling: a critical review[J]. Chem,2018,4(7):1492-1509. doi: 10.1016/j.chempr.2018.03.011
    [27] 吴东明, 何翠翠, 邓晓, 等. 土壤溶解性有机质的组分分离与表征技术研究进展[J]. 东北农业科学,2022,47(2):48-55.

    WU D M, HE C C, DENG X, et al. The technology of isolation and characterization for dissolved organic matter in soil[J]. Journal of Northeast Agricultural Sciences,2022,47(2):48-55.
    [28] STUBBINS A, LAPIERRE J F, BERGGREN M, et al. What's in an EEM: molecular signatures associated with dissolved organic fluorescence in boreal Canada[J]. Environmental Science & Technology,2014,48(18):10598-10606.
    [29] SPENCER R G M, GUO W D, RAYMOND P A, et al. Source and biolability of ancient dissolved organic matter in glacier and lake ecosystems on the Tibetan Plateau[J]. Geochimica et Cosmochimica Acta,2014,142:64-74. doi: 10.1016/j.gca.2014.08.006
    [30] LI L, WANG Y, ZHANG W J, et al. New advances in fluorescence excitation-emission matrix spectroscopy for the characterization of dissolved organic matter in drinking water treatment: a review[J]. Chemical Engineering Journal,2020,381:122676. doi: 10.1016/j.cej.2019.122676
    [31] McKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography,2001,46(1):38-48. doi: 10.4319/lo.2001.46.1.0038
    [32] ZSOLNAY A, BAIGAR E, JIMENEZ M, et al. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying[J]. Chemosphere,1999,38(1):45-50. doi: 10.1016/S0045-6535(98)00166-0
    [33] 李昊洋. 基于多技术联用的洱海有机质分布特征及溯源研究[D]. 北京: 北京交通大学, 2022.
    [34] COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry,1996,51(4):325-346. doi: 10.1016/0304-4203(95)00062-3
    [35] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology,2003,37(24):5701-5710.
    [36] MURPHY K R, STEDMON C A, GRAEBER D, et al. Fluorescence spectroscopy and multi-way techniques. PARAFAC[J]. Analytical Methods,2013,5(23):6557-6566. doi: 10.1039/c3ay41160e
    [37] BAI Y J, ZHANG S R, MU E L, et al. Characterizing the spatiotemporal distribution of dissolved organic matter (DOM) in the Yongding River Basin: insights from flow regulation[J]. Journal of Environmental Management,2023,325:116476. doi: 10.1016/j.jenvman.2022.116476
    [38] ZHAO Y Q, SHEN J, FENG J M, et al. Relative contributions of different sources to DOM in Erhai Lake as revealed by PLS-PM[J]. Chemosphere,2022,299:134377. doi: 10.1016/j.chemosphere.2022.134377
    [39] ZHANG W, LI T, DONG B. Characterizing dissolved organic matter in Taihu Lake with PARAFAC and SOM method[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research,2022,85(2):706-718. doi: 10.2166/wst.2022.010
    [40] CUSS C W, McCONNELL S M, GUÉGUEN C. Combining parallel factor analysis and machine learning for the classification of dissolved organic matter according to source using fluorescence signatures[J]. Chemosphere,2016,155:283-291. doi: 10.1016/j.chemosphere.2016.04.061
    [41] 刘健, 祁黎明, 于常红, 等. 三维荧光光谱应用于海水中有色溶解有机物分析的探讨[J]. 海洋环境科学,2014,33(4):650-656.

    LIU J, QI L M, YU C H, et al. Discussion about the application of excitation emission matrix spectroscopy in the analysis of colored dissolved organic matter in seawater[J]. Marine Environmental Science,2014,33(4):650-656.
    [42] 敖静, 王涛, 常瑞英. 三维荧光光谱法在土壤溶解性有机质组分解析中的应用[J]. 土壤通报,2022,53(3):738-746.

    AO J, WANG T, CHANG R Y. Application of the three-dimensional excitation-emission matrix fluorescence spectroscopy in the analysis of soil dissolved organic matter components[J]. Chinese Journal of Soil Science,2022,53(3):738-746.
    [43] 褚江勇, 廖振良. 水环境中溶解性有机物溯源分析及分子结构表征概述[J]. 能源环境保护,2020,34(2):1-7. doi: 10.3969/j.issn.1006-8759.2020.02.001

    CHU J Y, LIAO Z L. Source tracking and molecular structure characterization of dissolved organic matter in aqueous environment[J]. Energy Environmental Protection,2020,34(2):1-7. doi: 10.3969/j.issn.1006-8759.2020.02.001
    [44] MILLIGAN H E, PRETZLAW T D, HUMPHRIES M M. Stable isotope differentiation of freshwater and terrestrial vascular plants in two subarctic regions[J]. Ecoscience,2010,17(3):265-275.
    [45] 刘金亮, 薛滨, 姚书春, 等. 湖泊水生植物稳定碳同位素分馏机制与应用研究进展[J]. 生态学报,2020,40(8):2533-2544.

    LIU J L, XUE B, YAO S C, et al. Mechanisms of stable carbon isotope fractionation of aquatic plants and the research advances of application[J]. Acta Ecologica Sinica,2020,40(8):2533-2544.
    [46] 林清, 王绍令. 沉水植物稳定碳同位素组成及影响因素分析[J]. 生态学报,2001,21(5):806-809. doi: 10.3321/j.issn:1000-0933.2001.05.018

    LIN Q, WANG S L. The composition of stable carbon isotope and some influencing factors of submerged plant[J]. Acta Ecologica Sinica,2001,21(5):806-809. doi: 10.3321/j.issn:1000-0933.2001.05.018
    [47] LIU Y, WANG X Y, WEN Q, et al. Identifying sources and variations of organic matter in an urban river in Beijing, China using stable isotope analysis[J]. Ecological Indicators,2019,102:783-790. doi: 10.1016/j.ecolind.2019.03.023
    [48] RIDDLE B, FOX J, MAHONEY D T, et al. Considerations on the use of carbon and nitrogen isotopic ratios for sediment fingerprinting[J]. Science of the Total Environment,2022,817:152640. doi: 10.1016/j.scitotenv.2021.152640
    [49] LI Z W, WANG S L, NIE X D, et al. The application and potential non-conservatism of stable isotopes in organic matter source tracing[J]. Science of the Total Environment,2022,838:155946. doi: 10.1016/j.scitotenv.2022.155946
    [50] YU X, ZHANG J L, KONG F L, et al. Identification of source apportionment and its spatial variability of dissolved organic matter in Dagu River-Jiaozhou Bay Estuary based on the isotope and fluorescence spectroscopy analysis[J]. Ecological Indicators,2019,102:528-537. doi: 10.1016/j.ecolind.2019.03.004
    [51] DERRIEN M, KIM M S, OCK G, et al. Estimation of different source contributions to sediment organic matter in an agricultural-forested watershed using end member mixing analyses based on stable isotope ratios and fluorescence spectroscopy[J]. Science of the Total Environment,2018,618:569-578. doi: 10.1016/j.scitotenv.2017.11.067
    [52] CARNEIRO L M, DO ROSÁRIO ZUCCHI M, de JESUS T B, et al. δ13C, δ15N and TOC/TN as indicators of the origin of organic matter in sediment samples from the estuary of a tropical river[J]. Marine Pollution Bulletin,2021,172:112857. doi: 10.1016/j.marpolbul.2021.112857
    [53] WU H, ZHANG H C, CHANG F Q, et al. Isotopic constraints on sources of organic matter and environmental change in Lake Yangzong, Southwest China[J]. Journal of Asian Earth Sciences,2021,217:104845. doi: 10.1016/j.jseaes.2021.104845
    [54] 张昊, 李建平. 稳定碳同位素在草地生态系统碳循环中的应用与展望[J]. 水土保持研究,2021,28(1):394-400.

    ZHANG H, LI J P. Application and prospect of stable carbon isotope to the study of carbon cycle in grassland ecosystem[J]. Research of Soil and Water Conservation,2021,28(1):394-400.
    [55] FRY B. Alternative approaches for solving underdetermined isotope mixing problems[J]. Marine Ecology Progress Series,2013,472:1-13. doi: 10.3354/meps10168
    [56] PHILLIPS D L, NEWSOME S D, GREGG J W. Combining sources in stable isotope mixing models: alternative methods[J]. Oecologia,2005,144(4):520-527. doi: 10.1007/s00442-004-1816-8
    [57] YIN Z, LI L Q, LIU C Y, et al. Historical variations of sedimentary organic matter sources and their relationships with human socio-economic activities in multiple habitats of a shallow lake[J]. Ecological Indicators,2022,140:109011. doi: 10.1016/j.ecolind.2022.109011
    [58] GUO Q J, WANG C Y, WEI R F, et al. Qualitative and quantitative analysis of source for organic carbon and nitrogen in sediments of rivers and lakes based on stable isotopes[J]. Ecotoxicology and Environmental Safety,2020,195:110436. doi: 10.1016/j.ecoenv.2020.110436
    [59] HEDGES J I, OADES J M. Comparative organic geochemistries of soils and marine sediments[J]. Organic Geochemistry,1997,27(7/8):319-361.
    [60] 梁作兵, 孙玉川, 李建鸿, 等. 典型岩溶区地下河中溶解态脂类生物标志物来源解析及其变化特征[J]. 环境科学,2016,37(5):1814-1822.

    LIANG Z B, SUN Y C, LI J H, et al. Sources and variation characteristics of dissolved lipid biomarkers in a typical Karst underground river[J]. Environmental Science,2016,37(5):1814-1822.
    [61] CHEN Y, ZHAO Z H, WANG Y H, et al. Effects of organic carbon burial on biomarker component changes in contamination in northeast Dianchi watershed[J]. Journal of Hazardous Materials,2023,445:130474. doi: 10.1016/j.jhazmat.2022.130474
    [62] BHANDARI R, ROUTH J, SHARMA S, et al. Contrasting lipid biomarkers in mountain rivers in the Nepal Himalayas: organic matter characteristics and contribution to the fluvial carbon pool[J]. Geoscience Frontiers,2021,12(6):101231. doi: 10.1016/j.gsf.2021.101231
    [63] 蒲阳, 葛井莲, 何天豪, 等. 太阳辐射影响高原生态系统的湖泊沉积生物标志物证据[J]. 地球科学前沿,2018,8(1):9-18.
    [64] COMISAROW M B, MARSHALL A G. Fourier transform ion cyclotron resonance spectroscopy[J]. Chemical Physics Letters,1974,25(2):282-283. doi: 10.1016/0009-2614(74)89137-2
    [65] FIEVRE A, SOLOUKI T, MARSHALL A G, et al. High-resolution Fourier transform ion cyclotron resonance mass spectrometry of humic and fulvic acids by laser desorption/ionization and electrospray ionization[J]. Energy & Fuels,1997,11(3):554-560.
    [66] 何晨, 何丁, 陈春茂, 等. 傅里叶变换离子回旋共振质谱在溶解性有机质组成分析中的应用[J]. 中国科学:地球科学,2022,52(12):2323-2341. doi: 10.1360/SSTe-2021-0390

    HE C, HE D, CHEN C M, et al. Application of Fourier transform ion cyclotron resonance mass spectrometry in molecular characterization of dissolved organic matter[J]. Scientia Sinica (Terrae),2022,52(12):2323-2341. doi: 10.1360/SSTe-2021-0390
    [67] KIM S, KRAMER R W, HATCHER P G. Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram[J]. Analytical Chemistry,2003,75(20):5336-5344. doi: 10.1021/ac034415p
    [68] LASZAKOVITS J R, MacKAY A A. Data-based chemical class regions for van Krevelen diagrams[J]. Journal of the American Society for Mass Spectrometry,2022,33(1):198-202. doi: 10.1021/jasms.1c00230
    [69] LIU S S, HE Z Q, TANG Z, et al. Linking the molecular composition of autochthonous dissolved organic matter to source identification for freshwater lake ecosystems by combination of optical spectroscopy and FT-ICR-MS analysis[J]. Science of the Total Environment,2020,703:134764. doi: 10.1016/j.scitotenv.2019.134764
    [70] GONSIOR M, PEAKE B M, COOPER W T, et al. Photochemically induced changes in dissolved organic matter identified by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry[J]. Environmental Science & Technology,2009,43(3):698-703.
    [71] WEN Z D, SONG K S, LIU G, et al. Characterizing DOC sources in China’s Haihe River Basin using spectroscopy and stable carbon isotopes[J]. Environmental Pollution,2020,258:113684. doi: 10.1016/j.envpol.2019.113684
    [72] RUAN M Q, WU F C, SUN F H, et al. Molecular-level exploration of properties of dissolved organic matter in natural and engineered water systems: a critical review of FTICR-MS application[J]. Critical Reviews in Environmental Science and Technology,2023,53(16):1534-1562. doi: 10.1080/10643389.2022.2157167
    [73] ZHEREBKER A, RUKHOVICH G D, SARYCHEVA A, et al. Aromaticity index with improved estimation of carboxyl group contribution for biogeochemical studies[J]. Environmental Science & Technology,2022,56(4):2729-2737.
    [74] D’ANDRILLI J, COOPER W T, FOREMAN C M, et al. An ultrahigh-resolution mass spectrometry index to estimate natural organic matter lability[J]. Rapid Communications in Mass Spectrometry:RCM,2015,29(24):2385-2401. doi: 10.1002/rcm.7400
    [75] HERTKORN N, FROMMBERGER M, WITT M, et al. Natural organic matter and the event horizon of mass spectrometry[J]. Analytical Chemistry,2008,80(23):8908-8919. doi: 10.1021/ac800464g
    [76] KELLERMAN A M, GUILLEMETTE F, PODGORSKI D C, et al. Unifying concepts linking dissolved organic matter composition to persistence in aquatic ecosystems[J]. Environmental Science & Technology,2018,52(5):2538-2548.
    [77] YUAN K T, WAN Q, CHAI B B, et al. Characterizing the effects of stormwater runoff on dissolved organic matter in an urban river (Jiujiang, Jiangxi Province, China) using spectral analysis[J]. Environmental Science and Pollution Research,2023,30(17):50649-50660. doi: 10.1007/s11356-023-25933-6
    [78] 马文娟, 刘丹妮, 杨芳, 等. 水环境中污染物同位素溯源的研究进展[J]. 环境工程技术学报,2020,10(2):242-250. doi: 10.12153/j.issn.1674-991X.20190081

    MA W J, LIU D N, YANG F, et al. Research progress in isotope methods for tracing contaminants in water environment[J]. Journal of Environmental Engineering Technology,2020,10(2):242-250. doi: 10.12153/j.issn.1674-991X.20190081
    [79] ZHANG Y L, ZHANG E L, YIN Y, et al. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude[J]. Limnology and Oceanography,2010,55(6):2645-2659. doi: 10.4319/lo.2010.55.6.2645
    [80] JIN X C, CHEN X Q, GAO L M, et al. The spectral resolution of DOM in urban rivers affected by different non-point source intensities using self-organizing maps[J]. Water Science and Technology,2023,88(1):266-277. doi: 10.2166/wst.2023.187
    [81] LAN J J, LIU L L, WANG X, et al. DOM tracking and prediction of rural domestic sewage with UV-vis and EEM in the Yangtze River Delta, China[J]. Environmental Science and Pollution Research,2022,29(49):74579-74590. doi: 10.1007/s11356-022-20979-4
    [82] CAWLEY K M, DING Y, FOURQUREAN J, et al. Characterising the sources and fate of dissolved organic matter in Shark Bay, Australia: a preliminary study using optical properties and stable carbon isotopes[J]. Marine and Freshwater Research,2012,63(11):1098. doi: 10.1071/MF12028
    [83] XIANG R, TIAN Z B, ZHANG C D, et al. Characterization of dissolved organic matter content, composition, and source during spring algal bloom in tributaries of the Three Gorges Reservoir[J]. Science of the Total Environment,2023,879:163139. doi: 10.1016/j.scitotenv.2023.163139
    [84] KIM M S, LIM B R, JEON P, et al. Innovative approach to reveal source contribution of dissolved organic matter in a complex river watershed using end-member mixing analysis based on spectroscopic proxies and multi-isotopes[J]. Water Research,2023,230:119470. doi: 10.1016/j.watres.2022.119470
    [85] TANG G, LI B R, ZHANG B W, et al. Dynamics of dissolved organic matter and dissolved organic nitrogen during anaerobic/anoxic/oxic treatment processes[J]. Bioresource Technology,2021,331:125026. doi: 10.1016/j.biortech.2021.125026
    [86] XU L, HU Q, JIAN M F, et al. Exploring the optical properties and molecular characteristics of dissolved organic matter in a large river-connected lake (Poyang Lake, China) using optical spectroscopy and FT-ICR MS analysis[J]. Science of the Total Environment,2023,879:162999. doi: 10.1016/j.scitotenv.2023.162999
    [87] POWERS L C, LUEK J L, SCHMITT-KOPPLIN P, et al. Seasonal changes in dissolved organic matter composition in Delaware Bay, USA in March and August 2014[J]. Organic Geochemistry,2018,122:87-97. doi: 10.1016/j.orggeochem.2018.05.005
    [88] ZHANG Y L, YANG K L, CHEN H M, et al. Origin, composition, and accumulation of dissolved organic matter in a hypersaline lake of the Qinghai-Tibet Plateau[J]. Science of the Total Environment,2023,868:161612. doi: 10.1016/j.scitotenv.2023.161612
    [89] HARIR M, CAWLEY K M, HERTKORN N, et al. Molecular and spectroscopic changes of peat-derived organic matter following photo-exposure: effects on heteroatom composition of DOM[J]. Science of the Total Environment,2022,838:155790. ◇ doi: 10.1016/j.scitotenv.2022.155790
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  43
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-07
  • 录用日期:  2023-11-28
  • 修回日期:  2023-10-17

目录

    /

    返回文章
    返回