留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湖库蓝藻水华控制技术发展、应用及展望

曹晶 袁静 赵丽 潘正国 闫国凯 高思佳 储昭升 郑丙辉

曹晶,袁静,赵丽,等.湖库蓝藻水华控制技术发展、应用及展望[J].环境工程技术学报,2024,14(2):487-500 doi: 10.12153/j.issn.1674-991X.20230453
引用本文: 曹晶,袁静,赵丽,等.湖库蓝藻水华控制技术发展、应用及展望[J].环境工程技术学报,2024,14(2):487-500 doi: 10.12153/j.issn.1674-991X.20230453
CAO J,YUAN J,ZHAO L,et al.Development, application and prospect of cyanobacteria blooms control technology in lakes and reservoirs[J].Journal of Environmental Engineering Technology,2024,14(2):487-500 doi: 10.12153/j.issn.1674-991X.20230453
Citation: CAO J,YUAN J,ZHAO L,et al.Development, application and prospect of cyanobacteria blooms control technology in lakes and reservoirs[J].Journal of Environmental Engineering Technology,2024,14(2):487-500 doi: 10.12153/j.issn.1674-991X.20230453

湖库蓝藻水华控制技术发展、应用及展望

doi: 10.12153/j.issn.1674-991X.20230453
基金项目: 国家水体污染控制与治理科技重大专项(2017ZX07401003)
详细信息
    作者简介:

    曹晶(1989—),女,助理研究员,博士研究生,主要从事湖库蓝藻水华研究,caojj2014@163.com

    通讯作者:

    储昭升(1973—),男,研究员,主要从事湖泊水体修复及蓝藻水华发生机理研究,chuzssci@yeah.net

  • 中图分类号: X524

Development, application and prospect of cyanobacteria blooms control technology in lakes and reservoirs

  • 摘要:

    蓝藻水华暴发会引起供水系统堵塞、水体异味、水生生物死亡等一系列生态环境问题,严重时还将威胁饮用水安全,因此采取切实有效的蓝藻水华控制技术对蓝藻水华防控至关重要。通过文献调研系统梳理了国内外蓝藻水华控制技术发展历程,综述了典型蓝藻水华控制技术及其适用范围、应用情况及优缺点等。结果表明:蓝藻水华控制技术总体分为物理控藻技术、化学控藻技术和生物控藻技术。从技术文献关键词时间发展脉络看,2010年之前国外蓝藻水华控制技术关键词多集中在絮凝、混凝等化学控藻技术,2010年后向水生植物抑藻等生物控藻技术发展;我国蓝藻水华控制技术关键词2010年前主要集中在鲢鳙鱼控藻、水生植物抑藻等生物控藻技术,2010年后超声波、机械除藻等物理控藻技术和絮凝等化学控藻技术快速发展,2015年后物理控藻技术进一步发展。国外蓝藻水华控制技术于20世纪50年代起步于化学控藻技术,2000年后研发了超声波、光波等物理控藻技术,2010年后主要以生物控藻和化学控藻技术为主;国内蓝藻水华控制技术于20世纪80年代起步于针对小型水体的生物控藻技术,2000年后逐渐发展为针对大型湖库的机械除藻技术(物理控藻技术)。物理控藻、化学控藻技术的应急效果显著,但物理控藻技术存在成本高、长效性不足等缺点,化学控藻技术存在二次污染风险;而生物控藻技术存在见效慢、有外来物种入侵风险、生态系统被扰乱风险等生态安全问题,目前实际应用案例较少。未来应加快推进蓝藻水华控制技术优化筛选和示范应用,同时开展蓝藻水华控制技术与内外源污染控制、水生态修复等技术的集成应用,提高蓝藻水华控制效果。

     

  • 图  1  蓝藻水华控制技术中英文文献发表数量年变化趋势

    Figure  1.  Annual trend of English and Chinese literature publications on cyanobacteria blooms control technology

    图  2  蓝藻水华控制技术文献发表数量占比变化

    Figure  2.  Proportion changes in the literature publications on cyanobacteria blooms control technology

    图  3  蓝藻水华控制技术英文文献关键词时间发展脉络

    Figure  3.  Time progression diagram of English literature on cyanobacteria blooms control technology

    图  4  蓝藻水华控制技术中文文献关键词时间发展脉络

    Figure  4.  Time progression diagram of Chinese literature on cyanobacteria blooms control technology

    表  1  典型蓝藻水华控制技术适用范围及优缺点

    Table  1.   Application range, advantages and shortages of typical cyanobacteria bloom control technology

    技术分类 技术名称 适用范围 作用效果 国内应用情况 优点 缺点
    物理控藻
    技术
    超声波控藻技术有藻华堆积趋势的小型湖泊或景观水体,Chla>50 μg/L[63]适宜频率和强度可使60%以上藻类
    沉降
    成功应用于银川市中山公园银湖[57]、上海曲阳公园景观湖[58]、深圳某水库围栏[59]、三峡库区澎溪河流域[61]沉降效果好,应急速度较快可能造成藻细胞破裂,藻毒素释放
    物理控藻
    技术
    水力控藻技术曝气充氧技术有水华发生的表层水体,Chla>100
    μg/L [63]
    溶解氧浓度增加多与其他技术组合使用[65]快速增氧,防止黑臭持续曝气可能会引起沉积物再悬浮和营养盐释放
    扬水筒曝气抑藻
    技术
    有藻类及温度垂直分层的深水(>10 m)水体,Chla<100 μg/L[44]溶解氧浓度增加,藻类垂直分布格局被打破,Chla削减率在40%以上[44]多应用于深水水库,如西安市黑河金盆水库[66]无二次污染受限于有藻类分层的水体,浅水湖泊一般不适用
    密度流扩散抑藻
    技术
    与外部水交换困难的闭锁性水域,温度有垂直分层的深水(>10 m)水体,Chla<80 μg/L[67]藻类垂直分布格局被打破,表层Chla削减率为60%~80%[67]
    无明显蓝藻堆积
    成功应用于日本东京某海域内湾[67],国内鲜见报道利用水体自身密度差打破垂直热分层,能耗低、应用灵活受限于有温度分层的水体
    机械除藻技术有明显水华堆积的近岸水域,Chla>500 μg/L实现近岸堆积藻类的日聚日清,蓝藻去除率>70%成功应用于太湖、巢湖、滇池等[48-49]将蓝藻进行异位处理,有效减少水体藻量处理量过小、处理效率不高
    黏土絮凝技术藻华暴发初期的小水体或局部水域,Chla<200 μg/L[63]藻类在短时间内快速沉降大多在实验阶段,在滇池围隔区域有应用[80]天然无毒、使用方便、吸附效果明显藻细胞暂时沉降,存在潜在生态风险
    加压控藻技术有水华堆积的近岸水域,Chla>200 μg/L透明度快速提升,蓝藻沉降率>70%应用于太湖、巢湖、滇池、星云湖等[48]能耗低、效率高、运行成本低蓝藻仍留在水体,存在潜在生态风险
    化学控藻
    技术
    化学杀藻剂小型水体、景观
    水体
    除藻效果明显,Chla削减率>90%应用于滇池草海特定水域[111]速度快、效果好有二次污染风险
    化学混凝/絮凝技术小水体或局部水域,Chla>1500 μg/L[63],常与其他技术联用蓝藻去除率>80%[63]对藻类进行异位处理,未见直接作用于水体中藻类处理的报道[112]沉降速度快,透明度提升效果好一些有机高分子絮凝剂存在二次污染风险
    生物控藻
    技术
    微生物制剂小型水体或试验水体,藻华暴发初期,Chla<200 μg/L溶藻率>70%[87]多处于实验阶段见效快微生物控制难度大,后续潜在的生态风险高
    生物操纵技术面积较小水体或试验水域,藻华暴发初期,Chla<50 μg/L对藻类控制率>60%成功应用于太湖、滇池特定水
    [37-38,104]
    安全、无二次污染风险控制效果较慢,应急效果较差
    水生植物抑藻技术富营养化程度低、藻细胞密度较低的水体,藻密度低于
    3 000万个/L[111]
    藻细胞密度减少率为25%~50%[107]太湖、星云湖、滇池、武汉沙湖等[113]效果好、费用低、材料易得、二次污染风险小生长管理难度大,不确定性强
    下载: 导出CSV
  • [1] 郑建军, 钟成华, 邓春光. 试论水华的定义[J]. 水资源保护,2006,22(5):45-47.

    ZHENG J J, ZHONG C H, DENG C G. Discussion on definition of algal bloom[J]. Water Resources Protection,2006,22(5):45-47.
    [2] QIN B Q, LI W, ZHU G W, et al. Cyanobacterial bloom management through integrated monitoring and forecasting in large shallow eutrophic Lake Taihu (China)[J]. Journal of Hazardous Materials,2015,287:356-363. doi: 10.1016/j.jhazmat.2015.01.047
    [3] REYNOLDS C S. Cyanobacterial water-blooms[J]. Advances in Botanical Research,1987,13:67-143.
    [4] SMAYDA T J. Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea[J]. Limnology and Oceanography,1997,42(5):1137-1153.
    [5] LARSSON M E, AJANI P A, RUBIO A M, et al. Long-term perspective on the relationship between phytoplankton and nutrient concentrations in a southeastern Australian Estuary[J]. Marine Pollution Bulletin,2017,114(1):227-238. doi: 10.1016/j.marpolbul.2016.09.011
    [6] KENEFICK S L, HRUDEY S E, PREPAS E E, et al. Odorous substances and cyanobacterial toxins in prairie drinking water sources[J]. Water Science and Technology,1992,25(2):147-154. doi: 10.2166/wst.1992.0046
    [7] KOTAK B G, KENEFICK S L, FRITZ D L, et al. Occurrence and toxicological evaluation of cyanobacterial toxins in Alberta lakes and farm dugouts[J]. Water Research,1993,27(3):495-506. doi: 10.1016/0043-1354(93)90050-R
    [8] HO J C, MICHALAK A M, PAHLEVAN N. Widespread global increase in intense lake phytoplankton blooms since the 1980s[J]. Nature,2019,574(7780):667-670. doi: 10.1038/s41586-019-1648-7
    [9] 朱喜, 朱云. 太湖蓝藻暴发治理存在的问题与治理思路[J]. 环境工程技术学报,2019,9(6):714-719.

    ZHU X, ZHU Y. Problems and countermeasures of controlling cyanobacteria bloom in Taihu Lake[J]. Journal of Environmental Engineering Technology,2019,9(6):714-719.
    [10] 王菁晗, 何吕奇姝, 杨成, 等. 太湖、巢湖、滇池水华与相关气象、水质因子及其响应的比较(1981—2015年)[J]. 湖泊科学,2018,30(4):897-906. doi: 10.18307/2018.0403

    WANG J H, HE L, YANG C, et al. Comparison of algal bloom related meteorological and water quality factors and algal bloom conditions among Lakes Taihu, Chaohu, and Dianchi(1981-2015)[J]. Journal of Lake Sciences,2018,30(4):897-906. doi: 10.18307/2018.0403
    [11] 国家环境保护总局. 国家环境科技发展“十五”计划纲要[J]. 环境保护,2001,29(8):3-9.
    [12] 关于印发《太湖水污染防治2002年度工作计划》的通知: 环办〔2002〕75号[A/OL]. [2023-05-05]. https://www.mee.gov.cn/gkml/zj/bgt/200910/t20091022_173790.htm.
    [13] 关于印发巢湖流域水污染防治“十五”计划实施意见的函: 环办函〔2003〕307号[A/OL]. [2023-05-05]. https://www.mee.gov.cn/gkml/zj/bgth/200910/t20091022_174072.htm.
    [14] 关于印发《滇池流域水污染防治“十五”计划》的通知: 环发〔2003〕84号[A/OL]. [2023-05-05]. https://www.mee.gov.cn/gkml/zj/wj/200910/t20091022_172191.htm.
    [15] 国家环境保护总局. 湖库富营养化防治技术政策[J]. 环境保护,2004,32(8):18-22.
    [16] 谢平. 太湖蓝藻的历史发展与水华灾害: 为何2007年在贡湖水厂出现水污染事件: 30年能使太湖摆脱蓝藻威胁吗[M]. 北京: 科学出版社, 2008.
    [17] 关于印发《2008年全国环境监测工作计划》的通知: 环办〔2008〕8号[A/OL]. [2023-05-05]. https://www.mee.gov.cn/gkml/zj/bgt/200910/t20091022_174048.htm.
    [18] 关于进一步加强饮用水水源安全保障工作的通知: 环办〔2009〕30号[A/OL]. [2023-05-05]. https://www.mee.gov.cn/gkml/hbb/bgt/200910/t20091022_174787.htm.
    [19] 关于加强重点湖泊蓝藻水华防控工作的通知: 环办函〔2014〕796号[A/OL]. [2023-05-05]. https://www.mee.gov.cn/gkml/hbb/bgth/201407/t20140702_278137.htm.
    [20] FITZGERALD G P, SKOOG F. Control of blue-green algae blooms with 2, 3-dichloronaphthoquinone[J]. Sewage and Industrial Wastes, 1954, 26(9): 1136–1140.
    [21] Wetzel R G. Limnology[M]. 2nd Edition. New York: Mc Graw-Hill, Inc, 1994.
    [22] SHAPIRO J, LAMARRA V, LYNCH M. Biomanipulation: an ecosystem approach to lake restoration[J]. Proceedings of the Symposium on Water,1975,21(6):85-96.
    [23] SHAPIRO J. Biomanipulation: the next phase: making it stable[J]. Hydrobiologia,1990,200(1):13-27.
    [24] MURRAY-GULDE C L, HEATLEY J E, SCHWARTZMAN A L, et al. Algicidal effectiveness of clearigate, cutrine-plus, and copper sulfate and margins of safety associated with their use[J]. Archives of Environmental Contamination and Toxicology,2002,43(1):19-27. doi: 10.1007/s00244-002-1135-1
    [25] van HULLEBUSCH E, DELUCHAT V, CHAZAL P M, et al. Environmental impact of two successive chemical treatments in a small shallow eutrophied lake: part Ⅱ. case of copper sulfate[J]. Environmental Pollution,2002,120(3):627-634. doi: 10.1016/S0269-7491(02)00191-4
    [26] GARCı́A-VILLADA L, RICO M, ALTAMIRANO M, et al. Occurrence of copper resistant mutants in the toxic cyanobacteria Microcystis aeruginosa: characterisation and future implications in the use of copper sulphate as algaecide[J]. Water Research,2004,38(8):2207-2213. doi: 10.1016/j.watres.2004.01.036
    [27] 郑少波, 杜鹤桂. 冷却水光磁协同处理技术[J]. 工业水处理,1998,18(1):9-11.

    ZHENG S B, DU H G. Researches on the technology of co treatment cooling water with photon and magnetic field[J]. Industrial Water Treatment,1998,18(1):9-11.
    [28] 陈贺林, 李芸, 储昭升, 等. 超声波控藻技术现状及研究进展[J]. 环境工程技术学报,2020,10(1):72-78.

    CHEN H L, LI Y, CHU Z S, et al. Present situation and research progress of ultrasonic algae control technology[J]. Journal of Environmental Engineering Technology,2020,10(1):72-78.
    [29] CONG H B, HUANG T L, CHAI B B, et al. A new mixing-oxygenating technology for water quality improvement of urban water source and its implication in a reservoir[J]. Renewable Energy,2009,34(9):2054-2060. doi: 10.1016/j.renene.2009.02.007
    [30] 方荣楠. 密度流扩散装置对闭锁海域的搅拌净化[J]. 渔业现代化,2000,27(1):42-43.

    FANG R N. Mixing and purification of closed sea area by density flow diffusion device[J]. Fishery Modernization,2000,27(1):42-43.
    [31] JUNGO E, VISSER P, STROOM J, et al. Artificial mixing to reduce growth of the blue-green alga Microcystis in Lake Nieuwe Meer, Amsterdam: an evaluation of 7 years of experience[J]. Water Science & Technology:Water Supply,2001,1:17-23.
    [32] 大内一之. 密度流拡散装置の研究開発[R]. 日本造船学会論文集, 1998: 183.
    [33] NEZBRYTSKA I, USENKO O, KONOVETS I, et al. Potential use of aquatic vascular plants to control cyanobacterial blooms: a review[J]. Water,2022,14(11):1727. doi: 10.3390/w14111727
    [34] GHERNAOUT B, GHERNAOUT D, SAIBA A L. Algae and cyanotoxins removal by coagulation/flocculation: a review[J]. Desalination and Water Treatment,2010,20(1/2/3):133-143.
    [35] 谢平. 鲢、鳙与藻类水华控制[M]. 北京: 科学出版社, 2003.
    [36] XIE P, LIU J. Practical success of biomanipulation using filter-feeding fish to control cyanobacteria blooms: a synthesis of decades of research and application in a subtropical hypereutrophic lake[J]. The Scientific World Journal,2001,1:337-356. doi: 10.1100/tsw.2001.67
    [37] 但文德, 王勇, 彭军, 等. 滇池内源污染生物治理(以鱼控藻)[R]. 昆明: 昆明市滇池管理局渔业行政执法处, 2015.
    [38] 李明锋. 太湖蓝藻治理推出“生物杀手”: 15万尾鲢鳙鱼游向内太湖[J]. 渔业致富指南,2001(19):17.

    LI M F. Blue-green algae control in Taihu Lake promotes “biological killer”: 150 000 silver carp and bighead carp swim to Taihu Lake[J]. Fishery Guide to Be Rich,2001(19):17.
    [39] 俞志明, 邹景忠, 马锡年, 等. 治理赤潮的化学方法[J]. 海洋与湖沼,1993,24(3):314-318.

    YU Z M, ZOU J Z, MA X N, et al. The chemical means of controlling red tides[J]. Oceanologia et Limnologia Sinica,1993,24(3):314-318.
    [40] YU Z M, ZOU J Z, MA X N. Application of clays to removal of red tide organisms: Ⅲ. the coagulation of kaolin on red tide organisms[J]. Chinese Journal of Oceanology and Limnology,1995,13(1):62-70. doi: 10.1007/BF02845350
    [41] 兰智文, 赵鸣, 尹澄清. 藻类水华的化学控制研究[J]. 环境科学,1992,13(1):12-15.

    LAN Z W, ZHAO M, YIN C Q. Controlling algal overgrowth with chemical methods[J]. Environmental Science,1992,13(1):12-15.
    [42] 沈银武, 刘永定, 吴国樵, 等. 富营养湖泊滇池水华蓝藻的机械清除[J]. 水生生物学报,2004,28(2):131-136.

    SHEN Y W, LIU Y D, WU G Q, et al. Mechanical removal of heavy cyanobacterial bloom in the hyper-eutrophic Lake Dianchi[J]. Acta Hydrobiologica Sinica,2004,28(2):131-136.
    [43] 徐佳良, 杨栋, 陈嘉伟, 等. 适用船载的藻水高效分离技术研究[J]. 中国环保产业,2019(4):52-56.

    XU J L, YANG D, CHEN J W, et al. Study on high efficiency separation technology for algae water of shipborne[J]. China Environmental Protection Industry,2019(4):52-56.
    [44] 丛海兵, 黄廷林, 缪晶广, 等. 水体修复装置: 扬水曝气器的开发[J]. 中国给水排水,2005,21(3):41-45.

    CONG H B, HUANG T L, MIAO J G, et al. Development of rehabilitation device for water body: water lifting aerator[J]. China Water & Wastewater,2005,21(3):41-45.
    [45] 孙昕, 张梦丹, 黄廷林, 等. 扬水曝气器类型对分层水库藻类控制效果的影响[J]. 环境科学研究,2014,27(12):1479-1485.

    SUN X, ZHANG M D, HUANG T L, et al. Comparison of water-lifting aerator type for algae inhibition in stratified reservoirs[J]. Research of Environmental Sciences,2014,27(12):1479-1485.
    [46] 付琨, 高云涛, 刘晓海. 超声波抑制滇池水华藻类生长的实验研究[J]. 化学与生物工程,2007,24(12):64-65.

    FU K, GAO Y T, LIU X H. Study on experiment of ultrasonic wave inhibiting the growth of water bloom algaes in Dianchi Lake[J]. Chemistry & Bioengineering,2007,24(12):64-65.
    [47] 倪其军, 眭爱国, 杨栋. 蓝藻打捞船研发与应用[C]//第十三届中国国际船艇展暨高性能船学术报告会, 上海, 2008.
    [48] 湖泊生态系统功能修复及规模化推广应用成套技术[R]. 北京: 中国环境科学研究院, 2021.
    [49] 受损水体修复技术长清单(技术、工程、设备名片集)[R]. 北京: 中国环境科学研究院, 2021.
    [50] BROEKMAN S, POHLMANN O, BEARDWOOD E S, et al. Ultrasonic treatment for microbiological control of water systems[J]. Ultrasonics Sonochemistry,2010,17(6):1041-1048. doi: 10.1016/j.ultsonch.2009.11.011
    [51] HAO H W, WU M S, CHEN Y F, et al. Cyanobacterial bloom control by ultrasonic irradiation at 20 kHz and 1.7 MHz[J]. Journal of Environmental Science and Health, Part A,2004,39(6):1435-1446. doi: 10.1081/ESE-120037844
    [52] 储昭升, 庞燕, 郑朔芳, 等. 超声波控藻及对水生生态安全的影响[J]. 环境科学学报,2008,28(7):1335-1339.

    CHU Z S, PANG Y, ZHENG S F, et al. Algal control by ultrasonic radiation and its risks to the aquatic environment[J]. Acta Scientiae Circumstantiae,2008,28(7):1335-1339.
    [53] FRENKEL V, KIMMEL E, IGER Y. Ultrasound-induced cavitation damage to external epithelia of fish skin[J]. Ultrasound in Medicine & Biology,1999,25(8):1295-1303.
    [54] HOLM E R, STAMPER D M, BRIZZOLARA R A, et al. Sonication of bacteria, phytoplankton and zooplankton: application to treatment of ballast water[J]. Marine Pollution Bulletin,2008,56(6):1201-1208. doi: 10.1016/j.marpolbul.2008.02.007
    [55] 谭啸, 顾惠卉, 段志鹏, 等. 超声波控藻对氮磷释放及水质变化的影响[J]. 中国环境科学,2018,38(4):1371-1376.

    TAN X, GU H H, DUAN Z P, et al. Effects of ultrasound on the released amount of nitrogen and phosphorus and changes of water quality during blooms control[J]. China Environmental Science,2018,38(4):1371-1376.
    [56] ZHOU Y C, HUANG H, WANG J, et al. Vaccination of the grouper, Epinephalus awoara, against vibriosis using the ultrasonic technique[J]. Aquaculture,2002,203(3/4):229-238.
    [57] 崔竣岭, 吴竹林. 超声波技术在防治人工湖水藻中的应用[J]. 宁夏农林科技,2009,50(2):41.

    CUI J L, WU Z L. Application of ultrasonic technology in controlling algae in artificial lake[J]. Journal of Ningxia Agriculture and Forestry Science and Technology,2009,50(2):41.
    [58] 丁永良, 卢守珍, 郭磊, 等. 超声波水域灭藻净水装置在上海曲阳公园景观湖的应用[J]. 上海水务,2006,22(4):15-18.
    [59] 闫莉. 超声共振技术在水库藻类抑制中的应用初探[J]. 人民珠江,2015,36(4):88-90.

    YAN L. Preliminary study on the application of ultrasonic resonance technology in algae inhibition in reservoirs[J]. Pearl River,2015,36(4):88-90.
    [60] RAJASEKHAR P, FAN L H, NGUYEN T, et al. A review of the use of sonication to control cyanobacterial blooms[J]. Water Research,2012,46(14):4319-4329. doi: 10.1016/j.watres.2012.05.054
    [61] 韩景明. 澎溪河水环境及超声波除(抑)藻技术研究[D]. 重庆: 重庆大学, 2011.
    [62] VISSER P M, IBELINGS B W, BORMANS M, et al. Artificial mixing to control cyanobacterial blooms: a review[J]. Aquatic Ecology,2016,50(3):423-441. doi: 10.1007/s10452-015-9537-0
    [63] 史小丽, 杨瑾晟, 陈开宁, 等. 湖泊蓝藻水华防控方法综述[J]. 湖泊科学,2022,34(2):349-375. doi: 10.18307/2022.0201

    SHI X L, YANG J S, CHEN K N, et al. Review on the control and mitigation strategies of lake cyanobacterial blooms[J]. Journal of Lake Sciences,2022,34(2):349-375. doi: 10.18307/2022.0201
    [64] 方荣楠. 间歇式空气扬水筒改善水质环境[J]. 渔业机械仪器,1989,16(6):39.

    FANG R N. Intermittent air pump improves water quality environment[J]. Fishery Modernization,1989,16(6):39.
    [65] 周真明, 黄廷林, 丛海兵. 扬水曝气/生物接触氧化工艺的除藻效果研究[J]. 中国给水排水,2007,23(15):13-16.

    ZHOU Z M, HUANG T L, CONG H B. Algae removal effect by combined process of water-lifting aeration and biological contact oxidation[J]. China Water & Wastewater,2007,23(15):13-16.
    [66] 马越, 黄廷林, 丛海兵, 等. 扬水曝气技术在河道型深水水库水质原位修复中的应用[J]. 给水排水,2012,48(4):7-13.

    MA Y, HUANG T L, CONG H B, et al. Application of the technology of water-lifting and aeration on water quality in situ restoration in a deep channel reservoir[J]. Water & Wastewater Engineering,2012,48(4):7-13.
    [67] 密度流扩散装置技术资料[R]. 东京: 东京大学, 2005.
    [68] 倪其军, 眭爱国, 顾建民. 蓝藻水脱水处理方法: CN101648092A[P]. 2011-06-01.
    [69] 吴玉宝, 王启山, 王玉恒, 等. 混凝-气浮除藻工艺中各参数的优化[J]. 中国给水排水,2008,(3):95-99.

    WU Y B, WANG Q S, WANG Y H, et al.Optimization of parameters in coagulation/flotation process for algae removal[J]. China Water & Wastewater,2008,(3):95-99.
    [70] 张军, 杨铮, 李婷, 等. 藻水分离技术应用研究进展[J]. 环境科学导刊,2019,38(增刊2):97-99.

    ZHANG J, YANG Z, LI T, et al. Research progress on the application of the technology of separating algae from water[J]. Environmental Science Survey,2019,38(Suppl 2):97-99.
    [71] 史春琼, 黄光团, 周鼎, 等. 磁化处理对水中藻类的去除效果研究[J]. 净水技术,2009,28(6):54-57.

    SHI C Q, HUANG G T, ZHOU D, et al. Algae removal effect by magnetization[J]. Water Purification Technology,2009,28(6):54-57.
    [72] 胡明明, 胡云海, 孙阳, 等. 一种蓝藻深井处理设备: CN207645907U[P]. 2018-07-24.
    [73] 李敦海, 汪志聪, 秦红杰, 等. 蓝藻水华的拦截和陷阱捕获综合控藻技术研究[J]. 长江流域资源与环境,2012,21(增刊2):45-50.

    LI D H, WANG Z C, QIN H J, et al. An integrated technology of bloom-barrier and bloom-trap for cyanobacterial bloom control[J]. Resources and Environment in the Yangtze Basin,2012,21(Suppl 2):45-50.
    [74] 柯凡, 李文朝, 潘继征, 等. 一种智能拦挡式围隔: CN108221891B[P]. 2023-08-18.
    [75] BELLOCQ B, RUIZ T, DELAPLACE G, et al. Screening efficiency and rolling effects of a rotating screen drum used to process wet soft agglomerates[J]. Journal of Food Engineering,2017,195:235-246. doi: 10.1016/j.jfoodeng.2016.09.023
    [76] 肖邦定, 黄立新. 一种全自动船载除藻的方法及设备: CN105833596A[P]. 2019-03-26.
    [77] ANDERSON D M. Turning back the harmful red tide[J]. Nature,1997,388(6642):513-514. doi: 10.1038/41415
    [78] 慕利梅, 王图锦, 曹琳, 等. 聚合氯化铝-镧改性膨润土的制备及除磷除藻研究[J]. 环境科学研究,2022,35(6):1450-1457.

    MU L M, WANG T J, CAO L, et al. Preparation of polyaluminum chloride-lanthanum modified bentonite and study on phosphorus and algae removal[J]. Research of Environmental Sciences,2022,35(6):1450-1457.
    [79] 蒋茜茜, 张小凤, 陈文清. 9种黏土对铜绿微囊藻的去除效果[J]. 中国给水排水,2018,34(7):56-59.

    JIANG Q Q, ZHANG X F, CHEN W Q. Effect of Microcystis aeruginosa removal by nine types of clay[J]. China Water & Wastewater,2018,34(7):56-59.
    [80] 孙珮石, 许晓毅, 毕晓伊, 等. 滇池水体除藻材料的除藻作用试验研究[J]. 安全与环境学报,2004,4(6):3-6.

    SUN P S, XU X Y, BI X Y, et al. Experimental research on algae-removing effect of Dianchi Lake by algaecide material[J]. Journal of Safety and Environment,2004,4(6):3-6.
    [81] AKTAS T S, TAKEDA F, MARUO C, et al. Comparison of four kinds of coagulants for the removal of picophytoplankton[J]. Desalination and Water Treatment,2013,51(16/17/18):3547-3557.
    [82] 郭培章, 宋群. 中外水体富营养化治理案例研究[M]. 北京: 中国计划出版社, 2003.
    [83] 陆贻超, 王国祥, 李仁辉. 超声波和改性粘土集成技术在去除蓝藻水华上的应用[J]. 湖泊科学,2010,22(3):421-429.

    LU Y C, WANG G X, LI R H. Using the integrated technique of ultrasonic and modified-clay to remove algal blooms[J]. Journal of Lake Sciences,2010,22(3):421-429.
    [84] CHU Z S, JIN X C, YANG B, et al. Buoyancy regulation of Microcystis flos-aquae during phosphorus-limited and nitrogen-limited growth[J]. Journal of Plankton Research,2007,29(9):739-745. doi: 10.1093/plankt/fbm054
    [85] 曹泽磊, 陈旭清, 胡航宇, 等. 一种蓝藻打捞及加压控藻船: CN106638518B[P]. 2018-11-13.
    [86] 潘阳. 大型水体原位加压沉淀控制蓝藻生长机理研究[D]. 扬州: 扬州大学, 2020.
    [87] 陈昕, 胡胜华, 陈晓飞, 等. 蓝藻水华应急处置方法与技术研究进展[J]. 环境科学与技术,2023,46(5):108-116.

    CHEN X, HU S H, CHEN X F, et al. Progress on methods and technologies for the emergency treatment of cyanobacterial blooms[J]. Environmental Science & Technology,2023,46(5):108-116.
    [88] 郑婷婷, 牟霄, 张崇淼, 等. 电活化过硫酸盐去除铜绿微囊藻的效果及机理研究[J]. 环境科学研究,2022,35(1):98-107.

    ZHENG T T, MOU X, ZHANG C M, et al. Removal performance and mechanisms of Microcystis aeruginosa by electro-activated persulfate[J]. Research of Environmental Sciences,2022,35(1):98-107.
    [89] YANG Z, BULEY R P, FERNANDEZ-FIGUEROA E G, et al. Hydrogen peroxide treatment promotes chlorophytes over toxic cyanobacteria in a hyper-eutrophic aquaculture pond[J]. Environmental Pollution,2018,240:590-598. doi: 10.1016/j.envpol.2018.05.012
    [90] MIAO H F, TAO W Y. The mechanisms of ozonation on cyanobacteria and its toxins removal[J]. Separation and Purification Technology,2009,66(1):187-193. doi: 10.1016/j.seppur.2008.11.008
    [91] 回东冰, 吴明松. 二氧化氯与PAC混凝剂同时投加对含藻水的处理效果[J]. 城镇供水,2022(5):30-34.

    HUI D B, WU M S. Effect of adding chlorine dioxide and PAC coagulant at the same time on algae-containing water treatment[J]. City and Town Water Supply,2022(5):30-34.
    [92] 王铮, 王珂, 夏萍. 二溴海因与次氯酸钠杀菌除藻效果对比研究[J]. 净水技术,2016,35(增刊1):39-41.

    WANG Z, WANG K, XIA P. Comparison of killing alga and bacteria by DBDMH and NaClO[J]. Water Purification Technology,2016,35(Suppl 1):39-41.
    [93] 赵小丽, 宋立荣, 张小明. 硫酸铜控藻对浮游植物群落的影响[J]. 水生生物学报,2009,33(4):596-602. doi: 10.3724/SP.J.1035.2009.40596

    ZHAO X L, SONG L R, ZHANG X M. Effects of copper sulfate treatment on eutrophic urban lake phytoplankton communities[J]. Acta Hydrobiologica Sinica,2009,33(4):596-602. doi: 10.3724/SP.J.1035.2009.40596
    [94] 王寿兵, 徐紫然, 马小雪, 等. Cu2+对铜绿微囊藻生长及叶绿素荧光主要参数的影响研究[J]. 中国环境科学,2016,36(12):3759-3765.

    WANG S B, XU Z R, MA X X, et al. Effects of Cu2+ on the growth and main parameters of chlorophyll fluorescence of Microcystis aeruginosa[J]. China Environmental Science,2016,36(12):3759-3765.
    [95] 柴仕淦, 贾钗, 李欣怡, 等. 季铵盐型Gemini表面活性剂去除铜绿微囊藻[J]. 环境工程技术学报,2016,6(1):8-15.

    CHAI S G, JIA C, LI X Y, et al. Removal of Microcystis aeruginosa by using quaternary ammonium salt of Gemini surfactant[J]. Journal of Environmental Engineering Technology,2016,6(1):8-15.
    [96] 王晓丽, 张永丽. 硫酸盐及其组合除藻的比较分析[J]. 资源开发与市场,2008,24(12):1060-1062.

    WANG X L, ZHANG Y L. Kraft and combinations algae removal of a comparative analysis[J]. Resource Development & Market,2008,24(12):1060-1062.
    [97] ZEMMOURI H, DROUICHE M, SAYEH A, et al. Coagulation flocculation test of keddara's water dam using chitosan and sulfate aluminium[J]. Procedia Engineering,2012,33:254-260. doi: 10.1016/j.proeng.2012.01.1202
    [98] 张谦, 刘晓冬, 邓非凡. KMnO4预氧化强化混凝沉淀对太湖高藻水DON去除研究[J]. 环境工程技术学报,2018,8(5):527-532.

    ZHANG Q, LIU X D, DENG F F. Research on removal of Taihu Lake algal source DON by KMnO4 pre-oxidation and coagulation sedimentation[J]. Journal of Environmental Engineering Technology,2018,8(5):527-532.
    [99] 陈春艳, 胡晗华, 王煜, 等. 氯化铁和聚丙烯酰胺絮凝剂WT652对三角褐指藻的絮凝作用[J]. 水生生物学报,2010,34(3):669-672.

    CHEN C Y, HU H H, WANG Y, et al. Flocculation of phaedactylum tricornutum induced by ferric chloride and polyacrylamide flocculant WT652[J]. Acta Hydrobiologica Sinica,2010,34(3):669-672.
    [100] 刘恩生. 生物操纵与非经典生物操纵的应用分析及对策探讨[J]. 湖泊科学,2010,22(3):307-314.

    LIU E S. Analysis on biomanipulation, non-traditional biomanipulation and discussion of the countermeasures of biomanipuiation application in waters[J]. Journal of Lake Sciences,2010,22(3):307-314.
    [101] SHAPIRO J, WRIGHT D I. Lake restoration by biomanipulation: round Lake, Minnesota, the first two years[J]. Freshwater Biology,1984,14:371-383. doi: 10.1111/j.1365-2427.1984.tb00161.x
    [102] 张喜勤, 徐锐贤, 许金玉, 等. 水溞净化富营养化湖水试验研究[J]. 水资源保护,1998,14(4):32-36.

    ZHANG X Q, XU R X, XU J Y, et al. Experimental study on purification of eutrophic lake water by water cress[J]. Water Resources Protection,1998,14(4):32-36.
    [103] 刘建康, 谢平. 用鲢鳙直接控制微囊藻水华的围隔试验和湖泊实践[J]. 生态科学,2003,22(3):193-198.

    LIU J K, XIE P. Direct control of microcystis bloom through the use of planktivorous carp-closure experiments and lake fishery practice[J]. Ecologic Science,2003,22(3):193-198.
    [104] 5亿尾鲢鳙鱼吃掉太湖658万吨蓝藻实现生态经济双赢[J]. 科学养鱼, 2018(8): 52.

    Million silver carp and bighead carp ate 6.58 million tons of cyanobacteria in Taihu Lake to achieve eco-economic win-win situation[J]. Scientific Fish Farming, 2018(8): 52.
    [105] 陈少莲, 刘肖芳, 胡传林, 等. 论鲢、鳙对微囊藻的消化利用[J]. 水生生物学报,1990,14(1):49-59.

    CHEN S L, LIU X F, HU C L, et al. On the digestion and utilization of microcystis by fingerlings of silver carp and bighead[J]. Acta Hydrobiologica Sinica,1990,14(1):49-59.
    [106] 此里能布, 毛建忠, 黄少峰. 经典与非经典生物操纵理论及其应用[J]. 生态科学,2012,31(1):87-91.

    CI L, MAO J Z, HUANG S F. Theory and application of biomanipulation and non-traditional biomanipulation[J]. Ecological Science,2012,31(1):87-91.
    [107] BARRETT P R F, LITTLEJOHN J W, CURNOW J. Long-term algal control in a reservoir using barley straw[M]//CAFFREY J, BARRETT PRF, FERREIRA MT, et al. Biology, ecology and management of aquatic plants. Dordrecht: Springer, 1999: 309-313.
    [108] 王敏, 刘浩, 王江南, 等. 生物法治理蓝藻水华研究进展[J]. 环境工程技术学报,2022,12(1):92-99.

    WANG M, LIU H, WANG J N, et al. Research progress on the biological control of cyanobacterial blooms[J]. Journal of Environmental Engineering Technology,2022,12(1):92-99.
    [109] PROETZEL A E. Artificial floating islands: cities of the future[J]. Theses and Major Papers, 1983: 145.
    [110] 刘晶晶, 彭娟莹, 吴奇. 生态浮岛技术的研究现状及展望[J]. 湖南农业科学,2014(15):47-49.

    LIU J J, PENG J Y, WU Q. Research status and prospect of ecological floating island technology[J]. Hunan Agricultural Sciences,2014(15):47-49.
    [111] 和丽萍. 利用化学杀藻剂控制滇池蓝藻水华研究[J]. 云南环境科学,2001,20(2):43-44.

    HE L P. Control blue algal bloom by using algaecide[J]. Yunnan Environmental Science,2001,20(2):43-44.
    [112] 宁平, 朱易, 徐小军. 三氯化铁在滇池蓝藻爆发期除藻中的应用研究[J]. 农业环境保护,2001,20(5):348-350.

    NING P, ZHU Y, XU X J. Application of ferric chloride in removal of blue algae at algal eruptive period in Dianchi Lake[J]. Agro-Environmental Protection,2001,20(5):348-350.
    [113] 赵祥华, 田军. 人工浮岛技术在云南湖泊治理中的意义及技术研究[J]. 云南环境科学,2005(增刊1):130-132. ⊗
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  176
  • HTML全文浏览量:  148
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-16

目录

    /

    返回文章
    返回