留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

兴凯湖水体磷形态特征及与气候变化的响应关系

汪洋 谢自建 孙黛茜 李春华 叶春 王文全 魏伟伟 王昊

汪洋,谢自建,孙黛茜,等.兴凯湖水体磷形态特征及与气候变化的响应关系[J].环境工程技术学报,2023,13(6):1965-1975 doi: 10.12153/j.issn.1674-991X.20230249
引用本文: 汪洋,谢自建,孙黛茜,等.兴凯湖水体磷形态特征及与气候变化的响应关系[J].环境工程技术学报,2023,13(6):1965-1975 doi: 10.12153/j.issn.1674-991X.20230249
WANG Y,XIE Z J,SUN D X,et al.Phosphorus morphology characteristics and its response to climate change in Xingkai Lake[J].Journal of Environmental Engineering Technology,2023,13(6):1965-1975 doi: 10.12153/j.issn.1674-991X.20230249
Citation: WANG Y,XIE Z J,SUN D X,et al.Phosphorus morphology characteristics and its response to climate change in Xingkai Lake[J].Journal of Environmental Engineering Technology,2023,13(6):1965-1975 doi: 10.12153/j.issn.1674-991X.20230249

兴凯湖水体磷形态特征及与气候变化的响应关系

doi: 10.12153/j.issn.1674-991X.20230249
基金项目: 水污染防治中央储备库项目“兴凯湖流域生态环境调查项目”
详细信息
    作者简介:

    汪洋(1997—),男,硕士研究生,研究方向为湖泊生态修复,2281823524@qq.com

    通讯作者:

    叶春(1970—),男,研究员,博士,主要从事湖泊生态修复理论与技术研究,yechbj@163.com

    王文全(1968—),女,教授,硕士,主要从事环境监测与评价等研究,wwq6804@163.com

  • 中图分类号: X524;X143

Phosphorus morphology characteristics and its response to climate change in Xingkai Lake

  • 摘要:

    兴凯湖是亚洲东北部最大的淡水湖,水体总磷(TP)浓度超标是近年来兴凯湖水质下降的主要原因,气候可能对区域水质有重要的影响。以兴凯湖中国湖区为研究区域,通过分析兴凯湖水体磷素时空变化特征,探究其主要组成形态,明确区域内气候因子变化对兴凯湖水体TP浓度的影响。结果表明:1)2010—2021年,兴凯湖水体TP浓度整体呈先降后升的趋势,冰封期水质状况优于非冰封期,大兴凯湖TP浓度相较于小兴凯湖更高。2)2022年5月磷形态数据表明,大、小兴凯湖水体TP主要由颗粒态磷(PP)组成(占比为60%和76%),PP是大、小兴凯湖TP超标的主要形态;小兴凯湖的PP与溶解磷浓度表现为北部高于南部,大兴凯湖PP浓度总体表现为东部高于西部,溶解磷浓度则呈相反趋势。3)近年来兴凯湖流域的气温及降水量均呈上升趋势,小兴凯湖TP浓度与气温、降水量均呈显著正相关,气温与降水增加可能会导致更多的营养盐进入水体,造成水质下降;大兴凯湖TP浓度与气候变化无明显相关性,但小兴凯湖与大兴凯湖的TP浓度之间呈显著正相关,表明大兴凯湖受区域气候变化影响较小,但其水质状况与小兴凯湖有紧密的关联性。无论冰封期还是非冰封期,小兴凯湖水质均优于大兴凯湖,作为大兴凯湖的前置湖泊,小兴凯湖在净化上游流域面源污染方面起到了重要的作用。

     

  • 图  1  兴凯湖及其采样点位分布示意

    Figure  1.  Schematic diagram of Xingkai Lake and distribution of the sampling points

    图  2  2010—2021年兴凯湖水体TP浓度变化趋势

    Figure  2.  Variation of TP concentration in Xingkai Lake from 2010 to 2021

    图  3  2010—2021年兴凯湖水体TP浓度月度变化

    注:因3—4月、11—12月采样困难,TP浓度数据缺失。

    Figure  3.  Monthly variation characteristics of TP concentration in Xingkai Lake from 2010 to 2021

    图  4  2022年5月兴凯湖水体各磷形态浓度变化

    注:红色表示大兴凯湖,灰色表示小兴凯湖。

    Figure  4.  Concentration variation characteristics of phosphorus forms in Xingkai Lake in May, 2022

    图  5  2022年5月兴凯湖水体磷形态空间分布

    Figure  5.  Spatial distribution characteristics of phosphorus forms in Xingkai Lake in May, 2022

    图  6  兴凯湖地区气候指标的年度和月度变化

    Figure  6.  Annual and monthly variation characteristics of climatic factors in Xingkai Lake area

    表  1  不同气候条件下兴凯湖水体TP浓度及超标率

    Table  1.   TP concentration and excess rate in Xingkai Lake under different climatic conditions

    气候条件出现
    概率/%
    TP浓度/(mg/L)TP超标率/%
    小兴
    凯湖
    大兴
    凯湖
    小兴
    凯湖
    大兴
    凯湖
    降水量
    /
    mm
    <25350.07±0.040.08±0.045063
    25~50170.07±0.020.08±0.026981
    ≥50480.08±0.020.08±0.027770
    平均气温
    /
    <10380.07±0.040.09±0.045163
    10~20360.07±0.020.08±0.027370
    ≥20260.08±0.020.08±0.027979
    平均风速/
    (m/s)
    <2250.08±0.020.09±0.028387
    2~3630.07±0.040.08±0.046666
    >3120.06±0.020.07±0.023655
    下载: 导出CSV

    表  2  大兴凯湖水体不同磷形态浓度与其他水质指标的相关性分析

    Table  2.   Correlation analysis between phosphorus forms and other water quality factors in Great Xingkai Lake

    指标PPDIPDOPSSChlapHDOEC水深
    PP 1
    DIP −0.330 1
    DOP −0.540** −0.155 1
    SS 0.291 −0.141 0.205 1
    Chla 0.241 −0.432* 0.125 0.175 1
    pH −0.419* 0.169 0.127 −0.142 0.030 1
    DO 0.169 0.122 −0.358* −0.116 −0.075 −0.394* 1
    EC 0.341 −0.394* 0.276 0.517** 0.421* −0.283 −0.291 1
    水深 −0.113 0.267 −0.197 −0.288 −0.134 −0.240 0.139 −0.259 1
      注:*表示P<0.05;**表示P<0.01。EC为电导率。
    下载: 导出CSV

    表  3  小兴凯湖水体不同磷形态浓度与其他水质指标的相关性

    Table  3.   Correlation between phosphorus forms and other water quality factors in Small Xingkai Lake

    指标PPDIPDOPSSChlapHDOEC水深
    PP 1
    DIP 0.479* 1
    DOP −0.032 0.083 1
    SS 0.110 0.151 0.196 1
    Chla 0.680** 0.480* 0.404* 0.191 1
    pH 0.149 −0.035 0.258 0.022 0.510* 1
    DO −0.097 −0.134 −0.418* −0.043 −0.237 −0.128 1
    EC 0.010 0.018 0.270 0.105 −0.031 −0.309 −0.326 1
    水深 0.221 0.456* 0.039 0.403 0.329 0.368 0.200 −0.044 1
      注:*表示P<0.05;**表示P<0.01。EC为电导率。
    下载: 导出CSV

    表  4  兴凯湖流域气候因子与湖泊水体TP浓度相关性

    Table  4.   Correlation between climatic factors in Xingkai Lake area and TP in the lake body

    因子气温降水量最大风速平均风速温差小兴凯
    湖TP
    浓度
    大兴凯
    湖TP
    浓度
    气温1
    降水量0.734**1
    最大
    风速
    −0.669**−0.458**1
    平均
    风速
    −0.640**−0.382**−0.942**1
    温差−0.067−0.299**0.398**0.272*1
    小兴凯
    湖TP浓度
    0.381**0.330**−0.370**−0.412**−0.0761
    大兴凯
    湖TP浓度
    0.0300.084−0.090−0.045−0.0970.357**1
      注:*表示P<0.05;**表示P<0.01。
    下载: 导出CSV
  • [1] BAI J H, YE X F, JIA J, et al. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions[J]. Chemosphere,2017,188:677-688. doi: 10.1016/j.chemosphere.2017.08.117
    [2] 唐富江, 刘伟, 王继隆, 等.兴凯湖与小兴凯湖鱼类组成及差异分析[J]. 水产学杂志,2011,24(3):40-47.

    TANG F J, LIU W, WANG J L, et al. Fish composition in Lake Xingkai (Khanka) and Lake mini-Xingkai[J]. Chinese Journal of Fisheries,2011,24(3):40-47.
    [3] 于淑玲, 李秀军, 李晓宇, 等.小兴凯湖水质评价[J]. 湿地科学,2013,11(4):466-469.

    YU S L, LI X J, LI X Y, et al. Evaluation of water quality of Xiaoxingkai Lake[J]. Wetland Science,2013,11(4):466-469.
    [4] 郑恺原, 向小华.基于AHM-CRITIC赋权的小兴凯湖水质评价模型[J]. 节水灌溉,2020(9):79-83.

    ZHENG K Y, XIANG X H. Water quality evaluation model of Xiaoxingkai Lake based on AHM-CRITIC weighting[J]. Water Saving Irrigation,2020(9):79-83.
    [5] 黑龙江省生态环境状况公报[R]. 哈尔滨: 黑龙江省生态环境厅, 2012—2021.
    [6] 周楠楠, 王赢, 高顺峰, 等.两种不同根系特征沉水植物对沉积物剖面不同形态磷的影响[J]. 环境科学学报,2021,41(6):2222-2228.

    ZHOU N N, WANG Y, GAO S F, et al. Effects of two submerged macrophytes with different root systems on different fractions of phosphorus in sediment profiles[J]. Acta Scientiae Circumstantiae,2021,41(6):2222-2228.
    [7] QIN B Q, ZHOU J, ELSER J J, et al. Water depth underpins the relative roles and fates of nitrogen and phosphorus in lakes[J]. Environmental Science & Technology,2020,54(6):3191-3198.
    [8] WORSFOLD P J, MONBET P, TAPPIN A D, et al. Characterisation and quantification of organic phosphorus and organic nitrogen components in aquatic systems: a review[J]. Analytica Chimica Acta,2008,624(1):37-58. doi: 10.1016/j.aca.2008.06.016
    [9] 吴金华, 盛芝露, 杜加强, 等.1956—2017年东北地区气温和降水的时空变化特征[J]. 水土保持研究,2021,28(3):340-347.

    WU J H, SHENG Z L, DU J Q, et al. Spatiotemporal change patterns of temperature and precipitation in northeast China from 1956 to 2017[J]. Research of Soil and Water Conservation,2021,28(3):340-347.
    [10] 金安琪, 张昂, 赵昕奕.气候变化情景下中国东部地区未来气候舒适度变化预测[J]. 北京大学学报(自然科学版),2019,55(5):887-898.

    JIN A Q, ZHANG A, ZHAO X Y. Estimation of climate comfort in Eastern China in the context of climate change[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2019,55(5):887-898.
    [11] 王锦旗, 宋玉芝, 薛艳.气候变化诱导水体富营养化研究进展[J]. 水资源保护,2022,38(4):145-155.

    WANG J Q, SONG Y Z, XUE Y. Research progress of water eutrophication induced by climate change[J]. Water Resources Protection,2022,38(4):145-155.
    [12] 安国英, 郭兆成, 叶佩.云南大理地区1989—2019年期间气候变化及对洱海水质的影响[J]. 现代地质,2022,36(2):406-417.

    AN G Y, GUO Z C, YE P. Climatic changes and impacts on water quality of Erhai Lake in Dali area, Yunnan Province over the period from 1989 to 2019[J]. Geoscience,2022,36(2):406-417.
    [13] 韩玉丽, 卜红梅.极端降水条件下白洋淀主淀区水化学特征及水质变化[J]. 湖泊科学,2022,34(6):1968-1979. doi: 10.18307/2022.0613

    HAN Y L, BU H M. Hydrochemical characteristics and water quality variations in the main area of Lake Baiyangdian under extreme precipitation[J]. Journal of Lake Sciences,2022,34(6):1968-1979. doi: 10.18307/2022.0613
    [14] 安睿, 康铁东, 于立峰.小兴凯湖湿地浮游生物功能群季节性变化研究[J]. 防护林科技,2018(2):16-19.

    AN R, KANG T D, YU L F. Seasonal changes of plankton functional groups in Xiaoxingkaihu wetland[J]. Protection Forest Science and Technology,2018(2):16-19.
    [15] 冯尚柱, 黄庆阳, 王继丰, 等.兴凯湖国家级自然保护区种子植物属的区系分析[J]. 国土与自然资源研究,2020(4):86-87.

    FENG S Z, HUANG Q Y, WANG J F, et al. Floristic analysis of spermatophyte Genera in Xingkai Lake National Nature Reserve, China[J]. Territory & Natural Resources Study,2020(4):86-87.
    [16] 赵婷婷, 刘妍, 葛蕾, 等.兴凯湖湿地中国新记录硅藻[J]. 水生生物学报,2016,40(5):1087-1094.

    ZHAO T T, LIU Y, GE L, et al. Newly recorded diatom species from Xingkai Lake wetland, China[J]. Acta Hydrobiologica Sinica,2016,40(5):1087-1094.
    [17] 齐竟辰. 基于全成本法的兴凯湖灌区水价研究[D]. 哈尔滨: 东北农业大学, 2020.
    [18] 陈志辉, 秦超, 姚章村.井灌与渠灌典型区农业发展特点剖析: 以创业农场与兴凯湖农场为例[J]. 水利科技与经济,2011,17(10):74-76.

    CHEN Z H, QIN C, YAO Z C. Analysis of agricultural development characteristics in typical areas of well irrigation and canal irrigation: taking Chuangye farm and Xingkai Lake farm as examples[J]. Water Conservancy Science and Technology and Economy,2011,17(10):74-76.
    [19] 孟凡淇. 兴凯湖农场农业产业化发展现状与对策研究[D]. 沈阳: 沈阳农业大学, 2018.
    [20] 李亮芳, 李春华, 叶春, 等.兴凯湖百余年营养演化历史及营养物基准[J]. 地球环境学报,2022,13(5):557-570.

    LI L F, LI C H, YE C, et al. Nutrient history in the past century and its baseline of Xingkai Lake[J]. Journal of Earth Environment,2022,13(5):557-570.
    [21] 孙黛茜, 谢自建, 汪洋, 等. 兴凯湖沉积物营养盐分布特征及来源解析[J]. 环境工程技术学报, 2023, 13(6):1976-1986.

    SUN D X, XIE Z J, WANG Y, et al.Distribution characteristics and source analysis of nutrients in sediments of Xingkai Lake[J].Journal of EnvironmentalEngineering Technology, 2023, 13(6): 1976-1986.
    [22] 中国科学院南京地理与湖泊研究所. 湖泊调查技术规程[M]. 北京: 科学出版社, 2015.
    [23] 国家环境保护总局. 水和废水监测分析方法[M].4版.北京: 中国环境科学出版社, 2002.
    [24] 张博, 郭云艳, 王书航, 等.呼伦湖水体磷的时空演变及其影响因素[J]. 环境科学研究,2021,34(4):824-830.

    ZHANG B, GUO Y Y, WANG S H, et al. Spatial-temporal changes of phosphorus and its influential factors in Lake Hulun[J]. Research of Environmental Sciences,2021,34(4):824-830.
    [25] 万美英, 刘宝玲, 蒋志伟.兴凯湖地区农业面源污染负荷分析[J]. 科技创新与应用,2013(20):5-6.

    WAN M Y, LIU B L, JIANG Z W. Analysis of agricultural non-point source pollution load in Xingkai Lake area[J]. Technology Innovation and Application,2013(20):5-6.
    [26] 朱广伟, 邹伟, 国超旋, 等.太湖水体磷浓度与赋存量长期变化(2005—2018年)及其对未来磷控制目标管理的启示[J]. 湖泊科学,2020,32(1):21-35. doi: 10.18307/2020.0103

    ZHU G W, ZOU W, GUO C X, et al. Long-term variations of phosphorus concentration and capacity in Lake Taihu, 2005-2018: implications for future phosphorus reduction target management[J]. Journal of Lake Sciences,2020,32(1):21-35. doi: 10.18307/2020.0103
    [27] 余佑金, 方向京, 王圣瑞, 等.滇池水体不同形态磷负荷时空分布特征[J]. 湖泊科学,2017,29(1):59-68. doi: 10.18307/2017.0107

    YU Y J, FANG X J, WANG S R, et al. Spatial and temporal distribution patterns of loadings of different phosphorous forms in Lake Dianchi[J]. Journal of Lake Sciences,2017,29(1):59-68. doi: 10.18307/2017.0107
    [28] 孙冬, 孙晓俊.兴凯湖水文特性[J]. 东北水利水电,2006,24(4):21.

    SUN D, SUN X J. Hydrological characteristics of Xingkai Lake[J]. Water Resources & Hydropower of Northeast China,2006,24(4):21.
    [29] CYR H, McCABE S K, NÜRNBERG G K. Phosphorus sorption experiments and the potential for internal phosphorus loading in littoral areas of a stratified lake[J]. Water Research,2009,43(6):1654-1666. doi: 10.1016/j.watres.2008.12.050
    [30] TAO Y Q, LU J. Occurrence of total phosphorus in surface sediments of Chinese Lakes and its driving factors and implications[J]. Journal of Hydrology,2020,580:124345. doi: 10.1016/j.jhydrol.2019.124345
    [31] 赵丽, 蔚静雯, 邢健宇, 等.南湖水体中悬浮物的时空分布特征及环境效应[J]. 环境工程技术学报,2020,10(6):905-911.

    ZHAO L, YU J W, XING J Y, et al. Spatial and temporal distribution characteristics and environmental effects of suspended solids in Nanhu Lake[J]. Journal of Environmental Engineering Technology,2020,10(6):905-911.
    [32] 柯长青, 蔡宇, 肖瑶.1979年—2019年兴凯湖湖冰物候变化的被动微波遥感监测[J]. 遥感学报,2022,26(1):201-210.

    KE C Q, CAI Y, XIAO Y. Monitoring ice phenology variations in Khanka Lake based on passive remote sensing data from 1979 to 2019[J]. National Remote Sensing Bulletin,2022,26(1):201-210.
    [33] SCHROTH A W, GILES C D, ISLES P D F, et al. Dynamic coupling of iron, manganese, and phosphorus behavior in water and sediment of shallow ice-covered eutrophic lakes[J]. Environmental Science & Technology,2015,49(16):9758-9767.
    [34] CHROST R J, SIUDA W, HALEMEJKO G Z. Longterm studies on alkaline phosphatase activity (APA) in a lake with fish-aquaculture in relation to lake eutrophication and phosphorus cycle[J]. Archiv für Hydrobiologie Supplementband,1984,70(1):1-32.
    [35] 李月. 不同磷酸盐浓度对虫黄藻生长、碱性磷酸酶活性以及基因表达影响的研究[D]. 上海: 上海海洋大学, 2021.
    [36] MALECKI L M, WHITE J R, REDDY K R. Nitrogen and phosphorus flux rates from sediment in the lower St. Johns River Estuary[J]. Journal of Environmental Quality,2004,33(4):1545-1555. doi: 10.2134/jeq2004.1545
    [37] 蔡天祎, 叶春, 李春华, 等.太湖湖滨带水向辐射带水生植物多样性及生境因子分析[J]. 环境工程技术学报,2023,13(1):164-170.

    CAI T Y, YE C, LI C H, et al. Analysis on aquatic macrophyte diversity and environmental factors within the radiant belt toward lake of lake-terrestrial ecotone in Lake Taihu[J]. Journal of Environmental Engineering Technology,2023,13(1):164-170.
    [38] 王文怀. CaO2控制景观水体沉积物中氮磷释放的效果及作用机制研究[D]. 西安: 西安建筑科技大学, 2022.
    [39] BAXA M, MUSIL M, KUMMEL M, et al. Dissolved oxygen deficits in a shallow eutrophic aquatic ecosystem (fishpond) : sediment oxygen demand and water column respiration alternately drive the oxygen regime[J]. Science of the Total Environment,2021,766:142647. doi: 10.1016/j.scitotenv.2020.142647
    [40] 陈洪森, 叶春, 李春华, 等.入湖河口区水生植物群落衰亡分解释放营养盐过程模拟研究[J]. 环境工程技术学报,2020,10(2):220-228.

    CHEN H S, YE C, LI C H, et al. Simulation study on decomposition and release of nutrients from aquatic macrophyte communities in confluence area between lake and river[J]. Journal of Environmental Engineering Technology,2020,10(2):220-228.
    [41] 刘雪梅, 章光新.气候变化对湖泊蓝藻水华的影响研究综述[J]. 水科学进展,2022,33(2):316-326.

    LIU X M, ZHANG G X. A review of studies on the impact of climate change on cyanobacteria blooms in lakes[J]. Advances in Water Science,2022,33(2):316-326.
    [42] 徐升宝, 谷孝鸿, 蔡春芳, 等.溶氧·水温和水流对东太湖沉积物中氮·磷释放的影响[J]. 安徽农业科学,2011,39(9):5175-5177.

    XU S B, GU X H, CAI C F, et al. Effect on the release of nitrogen and phosphorus from sediment of the East Taihu by dissolved oxygen, water temperature and currents[J]. Journal of Anhui Agricultural Sciences,2011,39(9):5175-5177.
    [43] 蔺星娜. 京津冀地区土壤风蚀扬尘起动传输特征及防治措施研究[D]. 北京: 北京林业大学, 2021.
    [44] 陈洪森, 魏伟伟, 叶春, 等.大型水生植物混合腐解对入湖河口水质的影响及适宜生物量研究[J]. 环境科学研究,2021,34(3):589-598.

    CHEN H S, WEI W W, YE C, et al. Effects of mixed decomposition of macrophytes on water quality at lake-river confluence area and suitable macrophytes biomass after harvest[J]. Research of Environmental Sciences,2021,34(3):589-598.
    [45] JAMES R T, HAVENS K, ZHU G W, et al. Comparative analysis of nutrients, chlorophyll and transparency in two large shallow lakes (Lake Taihu, P. R. China and Lake Okeechobee, USA)[J]. Hydrobiologia,2009,627(1):211-231. doi: 10.1007/s10750-009-9729-5
    [46] 任国玉, 姜彤, 李维京, 等.气候变化对中国水资源情势影响综合分析[J]. 水科学进展,2008,19(6):772-779.

    REN G Y, JIANG T, LI W J, et al. An integrated assessment of climate change impacts on China's water resources[J]. Advances in Water Science,2008,19(6):772-779.
    [47] 夏星辉, 吴琼, 牟新利.全球气候变化对地表水环境质量影响研究进展[J]. 水科学进展,2012,23(1):124-133.

    XIA X H, WU Q, MOU X L. Advances in impacts of climate change on surface water quality[J]. Advances in Water Science,2012,23(1):124-133. ◇
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  310
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-29
  • 网络出版日期:  2023-11-24

目录

    /

    返回文章
    返回