留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PSO-BP神经网络的山西省碳排放预测

杨俊祺 范晓军 赵跃华 袁进

杨俊祺,范晓军,赵跃华,等.基于PSO-BP神经网络的山西省碳排放预测[J].环境工程技术学报,2023,13(6):2016-2024 doi: 10.12153/j.issn.1674-991X.20230190
引用本文: 杨俊祺,范晓军,赵跃华,等.基于PSO-BP神经网络的山西省碳排放预测[J].环境工程技术学报,2023,13(6):2016-2024 doi: 10.12153/j.issn.1674-991X.20230190
YANG J Q,FAN X J,ZHAO Y H,et al.Prediction of carbon emissions in Shanxi Province based on PSO-BP neural network[J].Journal of Environmental Engineering Technology,2023,13(6):2016-2024 doi: 10.12153/j.issn.1674-991X.20230190
Citation: YANG J Q,FAN X J,ZHAO Y H,et al.Prediction of carbon emissions in Shanxi Province based on PSO-BP neural network[J].Journal of Environmental Engineering Technology,2023,13(6):2016-2024 doi: 10.12153/j.issn.1674-991X.20230190

基于PSO-BP神经网络的山西省碳排放预测

doi: 10.12153/j.issn.1674-991X.20230190
基金项目: 山西省发展改革委员会研究课题(JDZB-GZ-FW-2022003_2/1499002022CGK01309)
详细信息
    作者简介:

    杨俊祺(1999—),男,硕士研究生,主要从事能源环境发展与碳排放建模研究,630042060@qq.com

    通讯作者:

    袁进(1967—),男,研究员,主要从事能源与应对气候变化政策研究,yuanjin@tyut.edu.cn

  • 中图分类号: X321

Prediction of carbon emissions in Shanxi Province based on PSO-BP neural network

  • 摘要:

    山西作为能源使用和碳排放大省,推动“双碳”战略对全国具有重要示范意义。基于IPCC(政府间气候变化专门委员会)排放系数法测算山西省2000—2020年的碳排放量,运用Tapio脱钩模型分析碳排放与经济发展之间的脱钩关系,利用LMDI法对影响碳排放变化的因素进行分解,采用PSO-BP神经网络模型对山西省的碳排放量进行模拟和预测。结果表明:2000—2020年山西省碳排放量呈增长趋势,碳排放强度呈下降趋势,脱钩系数为0.585,整体处于弱脱钩状态。经济增长是碳排放量增长的决定因素,而产业结构与能源强度的优化调整是抑制碳排放的主导因素。引入PSO(粒子群优化算法)有效提高了BP神经网络的预测精度。预测结果显示,在基准情景、低碳情景和强化低碳情景下,山西省碳排放分别于2032年、2029年和2027年达峰。针对预测结果,提出了相关政策建议。

     

  • 图  1  PSO-BP模型流程

    Figure  1.  PSO-BP model process

    图  2  2000—2020年山西省碳排放情况

    Figure  2.  Carbon emissions in Shanxi Province from 2000 to 2020

    图  3  山西省碳排放量模拟值与真实值

    Figure  3.  Comparison of simulated and real carbon emissions in Shanxi Province

    图  4  山西省碳排放情景预测

    Figure  4.  Prediction of carbon emission scenarios in Shanxi Province

    表  1  脱钩状态分类

    Table  1.   Decoupling status classification

    类型状态$\Delta C$$\Delta G$UGC含义
    脱钩强脱钩+(−∞,0)经济增长,碳排放量减少
    弱脱钩++[0,0.8)碳排放量增速低于经济增速
    衰退脱钩(1.2,+∞)碳排放量降低速度高于
    经济衰退速度
    负脱钩强负脱钩+(−∞,0)经济衰退,碳排放量增加
    弱负脱钩[0,0.8)碳排放量降低速度低于
    经济衰退速度
    增长负脱钩++(1.2,+∞)碳排放量增速快于经济增速
    连接增长连接++[0.8,1.2]经济增长,碳排放量增加
    衰退连接[0.8,1.2]经济衰退,碳排放量减少
    下载: 导出CSV

    表  2  不同能源的碳排放系数

    Table  2.   Carbon emission coefficient of different energy sources

    类型平均低位
    发热值1)
    单位热值含碳
    量/
    (t/TJ)
    碳氧化
    率/%
    碳排放系数/

    (t/t)
    原煤20 90826.4941.900 3
    洗精煤26 34025.4982.405 0
    其他洗煤8 36025.4900.701 0
    型煤15 44033.6901.712 0
    焦炭28 44029.5932.860 9
    焦炉煤气16 74613.6990.825 2
    其他煤气9 79612.2990.433 6
    其他焦化产品33 45029.5933.364 9
    汽油43 07018.9982.925 1
    煤油43 07019.6983.033 4
    柴油42 65020.2983.095 8
    燃料油41 82021.1983.170 8
    液化石油气50 18017.2983.101 4
    其他石油制品41 82020.0983.005 5
    天然气38 46015.3992.136 0
    液化天然气49 03015.3992.723 1
      1)固体、液体单位为kJ/kg,气体单位为kJ/m3
    下载: 导出CSV

    表  3  山西省经济增长与碳排放脱钩状态

    Table  3.   Status of decoupling between economic growth and carbon emissions in Shanxi Province

    年份$ \Delta C $$ \Delta G $UGC$ \mathrm{脱}\mathrm{钩}\mathrm{状}\mathrm{态} $
    20010.3140.1013.113扩张负脱钩
    20020.0990.1290.771弱脱钩
    20030.1180.1190.990增长连接
    20040.0690.1220.566弱脱钩
    20050.0700.1050.666弱脱钩
    20060.1040.0991.046增长连接
    20070.0620.1320.472弱脱钩
    20080.0860.0831.041增长连接
    20090.0150.0550.282弱脱钩
    20100.0660.1080.613弱脱钩
    20110.0880.1000.885增长连接
    20120.0560.0920.606弱脱钩
    20130.0170.0900.192弱脱钩
    2014−0.0220.049−0.455强脱钩
    2015−0.0570.030−1.913强脱钩
    20160.0120.0410.295弱脱钩
    20170.0630.0680.924增长连接
    20180.0220.0660.329弱脱钩
    20190.0410.0610.668弱脱钩
    20200.0220.0360.611弱脱钩
    均值0.0620.0840.585弱脱钩
    下载: 导出CSV

    表  4  LMDI碳排放因素分解结果

    Table  4.   Decomposition results of LMDI carbon emission factors 万t 

    年份人口效应
    $(\Delta p)$
    经济增长效应
    $(\Delta g) $
    产业结构效应
    $(\Delta v) $
    能耗强度效应
    $(\Delta e) $
    能源结构效应
    ($ \Delta s $)
    综合效应
    $(\Delta C) $
    2001137.381 670.81148.462 766.86431.275 154.78
    2002276.064 002.48657.271 667.27695.157 298.23
    2003422.416 455.761 985.77649.49574.4910 087.92
    2004571.569 022.752 660.15−955.58617.8811 916.76
    2005721.4011 361.133 760.77−3 229.731 333.2713 946.84
    2006896.0514 068.004 234.19−3 000.66834.5117 032.09
    20071 050.0717 328.724 886.46−5 084.95936.4819 116.78
    20081 224.6019 878.654 907.45−5 246.531 419.8422 184.00
    20091 360.2121 303.153 852.04−5 266.431 532.4322 781.40
    20102 503.2723 621.864 958.97−6 374.13664.1725 374.14
    20112 526.6727 385.985 792.55−7 490.51853.9029 068.59
    20122 496.5330 873.704 914.36−7 638.88958.7531 604.46
    20132 397.2133 496.293 973.19−8 293.88861.6032 434.40
    20142 307.2634 336.782 754.11−9 095.351 042.1031 344.89
    20152 144.9033 903.57−1 090.63−7 721.921 369.0128 604.94
    20162 146.2835 556.41−1 783.74−7 399.25629.9529 149.65
    20172 192.7538 748.05−313.96−8 928.03311.7032 010.51
    20182 144.7840 924.88−1 108.29−9 332.00431.8233 061.19
    20192 134.4043 363.64−1 316.55−9 822.89667.7235 026.31
    20202 107.9444 999.20−1 665.93−9 936.84703.3936 207.76
    累计贡献率/%5.82124.28−4.60−27.441.94100
    下载: 导出CSV

    表  5  相关性分析结果

    Table  5.   Correlation analysis results

    驱动因素含义|r|
    人口人口数量0.863**
    经济增长人均GDP0.962**
    产业结构第二产业增加值/GDP0.878**
    能耗强度能源消耗量/GDP0.924**
    能源结构煤炭消费量/能源消耗量0.955**
      注:**表示在 0.01 水平相关性显著。
    下载: 导出CSV

    表  6  2种模型预测效果对比

    Table  6.   Comparison of prediction effects of two models

    预测模型 BP PSO-BP
    R2 0.953 4 0.990 6
    MAE/亿t 0.392 8 0.080 0
    RMSE/亿t 0.228 7 0.102 9
    MAPE/% 9.59 2.15
    下载: 导出CSV

    表  7  山西省各驱动因素变化率

    Table  7.   Change rate of various driving factors in Shanxi Province

    情景变化速率
    pgves
    基准情景
    低碳情景
    强化低碳情景
    下载: 导出CSV
  • [1] ZHAO L T, ZHAO T, YUAN R. Scenario simulations for the peak of provincial household CO2 emissions in China based on the STIRPAT model[J]. Science of the Total Environment,2022,809:151098. doi: 10.1016/j.scitotenv.2021.151098
    [2] 韩楠, 罗新宇.多情景视角下京津冀碳排放达峰预测与减排潜力[J]. 自然资源学报,2022,37(5):1277-1288. doi: 10.31497/zrzyxb.20220512

    HAN N, LUO X Y. Carbon emission peak prediction and reduction potential in Beijing-Tianjin-Hebei region from the perspective of multiple scenarios[J]. Journal of Natural Resources,2022,37(5):1277-1288. doi: 10.31497/zrzyxb.20220512
    [3] 李建豹, 黄贤金, 揣小伟, 等. “双碳”背景下长三角地区碳排放情景模拟研究[J]. 生态经济, 2022,38(11):13-18.

    LI J B, HUANG X J, CHUAI X W, et al. Scenario simulation of carbon emissions in the Yangtze River Delta under the background of "dual carbon" [J]. Ecological Economy, 2022,38(11):13-18.
    [4] 刘茂辉, 翟华欣, 刘胜楠, 等.基于LMDI方法和STIRPAT模型的天津市碳排放量对比分析[J]. 环境工程技术学报,2023,13(1):63-70.

    LIU M H, ZHAI H X, LIU S N, et al. Comparative analysis of carbon emissions in Tianjin based on LMDI method and STIRPAT model[J]. Journal of Environmental Engineering Technology,2023,13(1):63-70.
    [5] 左朝晖, 李绍康, 杨津津, 等.基于GA-BP神经网络的页岩气开发区域水资源承载力研究[J]. 环境工程技术学报,2021,11(1):194-201.

    ZUO Z H, LI S K, YANG J J, et al. Research on water resources carrying capacity of shale gas development area based on GA-BP neural network[J]. Journal of Environmental Engineering Technology,2021,11(1):194-201.
    [6] 张梦迪, 徐庆, 刘振鸿, 等.基于动态滑动窗口BP神经网络的水质时间序列预测[J]. 环境工程技术学报,2022,12(3):809-815.

    ZHANG M D, XU Q, LIU Z H, et al. Prediction of water quality time series based on the dynamic sliding window BP neural network model[J]. Journal of Environmental Engineering Technology,2022,12(3):809-815.
    [7] 赵金辉, 李景顺, 王潘乐, 等. 基于 Lasso-BP神经网络模型的河南省碳达峰路径研究[J]. 环境工程, 2022,40(12):151-156.

    ZHAO J H, LI J S, WANG P L, et al. A study of carbon peak paths in Henan Province based on Lasso regression - BP neural network model[J]. Environmental Engineering, 2022,40(12):151-156.
    [8] 董聪, 董秀成, 蒋庆哲, 等.《巴黎协定》背景下中国碳排放情景预测: 基于BP神经网络模型[J]. 生态经济,2018,34(2):18-23.

    DONG C, DONG X C, JIANG Q Z, et al. Scenarios prediction of the carbon dioxide emissions in China under the background of the Paris agreement based on BP neural network[J]. Ecological Economy,2018,34(2):18-23.
    [9] 习立洋, 吴娜, 吉永军, 等.基于PSO-BP神经网络的船体分段任务包工时定额模型[J]. 船舶工程,2020,42(2):135-141.

    XI L Y, WU N, JI Y J, et al. Man-hour quota model of hull block working package based on PSO-BP neural network[J]. Ship Engineering,2020,42(2):135-141.
    [10] 田野. 基于神经网络和粒子群优化算法的供热负荷预测研究[D]. 北京: 北京建筑大学, 2022.
    [11] 赵江燕, 朱宇恩, 马建超, 等.山西省能源消费碳排放清单和影响因素研究[J]. 太原理工大学学报,2022,53(6):989-996.

    ZHAO J Y, ZHU Y E, MA J C, et al. Research on carbon emission inventory based on energy activities and the driving factors in Shanxi[J]. Journal of Taiyuan University of Technology,2022,53(6):989-996.
    [12] 郭沛, 连慧君, 丛建辉.山西省碳排放影响因素分解: 基于LMDI模型的实证研究[J]. 资源开发与市场,2016,32(3):308-312.

    GUO P, LIAN H J, CONG J H. Decompose of carbon emissions influence factors in Shanxi Province: empirical research based on LMDI model[J]. Resource Development & Market,2016,32(3):308-312.
    [13] 关敏捷, 袁艳红, 冉木希, 等.基于STIRPAT模型的山西省能源碳排放影响因素及峰值预测[J]. 中国煤炭,2021,47(9):48-55.

    GUAN M J, YUAN Y H, RAN M X, et al. Influencing factors and peak forecast of energy carbon emission in Shanxi based on STIRPAT model[J]. China Coal,2021,47(9):48-55.
    [14] 杜俊慧, 张克勇, 张雪姣.山西省碳排放影响因素分解及峰值预测[J]. 中北大学学报(自然科学版),2018,39(3):334-343.

    DU J H, ZHANG K Y, ZHANG X J. Study on influence factors of carbon emission and prediction of peak value in Shanxi Province[J]. Journal of North University of China (Natural Science Edition),2018,39(3):334-343.
    [15] 朱宇恩, 李丽芬, 贺思思, 等.基于IPAT模型和情景分析法的山西省碳排放峰值年预测[J]. 资源科学,2016,38(12):2316-2325.

    ZHU Y E, LI L F, HE S S, et al. Peak year prediction of Shanxi Province’s carbon emissions based on IPAT modeling and scenario analysis[J]. Resources Science,2016,38(12):2316-2325.
    [16] IPCC. 2006 IPCC guidelines for national greenhouse gas inventories[EB/OL]. (2019-09-12)[2023-03-01]. http://www.ipcc-nggip.iges.or.jp/public/2006gl/chinese/index.html.
    [17] 蔡博峰, 朱松丽, 于胜民, 等.《IPCC 2006年国家温室气体清单指南2019修订版》解读[J]. 环境工程,2019,37(8):1-11.

    CAI B F, ZHU S L, YU S M, et al. The interpretation of 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventory[J]. Environmental Engineering,2019,37(8):1-11.
    [18] PETRI T. Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001 [J]. Transport Policy, 2005, 12 (2).
    [19] 张型芳, 罗宏, 吕连宏.碳排放与经济增长的协调性分析[J]. 环境工程技术学报,2017,7(4):517-524.

    ZHANG X F, LUO H, LÜ L H. Coordination analysis on carbon emission and economic growth[J]. Journal of Environmental Engineering Technology,2017,7(4):517-524.
    [20] 谌伟, 李荷华.LMDI分解方法在碳排放领域用法探讨[J]. 生态经济,2015,31(8):93-96.

    CHEN W, LI H H. Discussion on application of LMDI for carbon emissions[J]. Ecological Economy,2015,31(8):93-96.
    [21] ANG B W. Decomposition analysis for policy making in energy: which is the preferred method[J]. Energy Policy,2004,32(9):1131-1139. doi: 10.1016/S0301-4215(03)00076-4
    [22] 杨存满, 鞠佳伟, 袁芳, 等.基于PSO-BP神经网络的水厂智能消毒预测模型[J]. 中国给水排水,2022,38(3):57-61.

    YANG C M, JU J W, YUAN F, et al. Research on intelligent disinfection prediction model of waterworks based on PSO-BP neural network[J]. China Water & Wastewater,2022,38(3):57-61.
    [23] 唐晓灵, 刘嘉敏.基于PSO-LSTM网络模型的建筑碳排放峰值预测[J]. 科技管理研究,2023,43(1):191-198.

    TANG X L, LIU J M. Forecast of peak carbon emissions of buildings based on PSO-LSTM model[J]. Science and Technology Management Research,2023,43(1):191-198.
    [24] PAO H T, TSAI C M. Modeling and forecasting the CO2 emissions, energy consumption, and economie growth in Brazil[J]. Energy,2011,36(5):2450-2458. doi: 10.1016/j.energy.2011.01.032
    [25] 李心萍, 苏时鹏, 张雅珊, 等.福建省碳排放预测与碳达峰路径分析[J]. 资源开发与市场,2023,39(2):139-147.

    LI X P, SU S P, ZHANG Y S, et al. Carbon emission prediction and carbon peak path analysis in Fujian Province[J]. Resource Development & Market,2023,39(2):139-147.
    [26] 秦艳, 王东燕, 杨美艳, 等.山西省“十四五”煤炭消费总量控制目标与对策研究[J]. 中国煤炭,2021(9):41-47.

    QIN Y, WANG D Y, YANG M Y, et al. Discussion on the goals and countermeasures of total coal consumption control in Shanxi during the 14th Five-Year Plan[J]. China Coal,2021(9):41-47. ⊕
  • 加载中
图(4) / 表(7)
计量
  • 文章访问数:  393
  • HTML全文浏览量:  149
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-10
  • 录用日期:  2023-07-26
  • 修回日期:  2023-06-30
  • 网络出版日期:  2023-08-03

目录

    /

    返回文章
    返回