留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ASBR联合SBBR工艺同步硝化反硝化处理垃圾渗滤液深度脱氮效能

乔壮明 温春燕 邰家芬 李建平 孔维忠 王凯

乔壮明,温春燕,邰家芬,等.ASBR联合SBBR工艺同步硝化反硝化处理垃圾渗滤液深度脱氮效能[J].环境工程技术学报,2023,13(6):2126-2134 doi: 10.12153/j.issn.1674-991X.20230130
引用本文: 乔壮明,温春燕,邰家芬,等.ASBR联合SBBR工艺同步硝化反硝化处理垃圾渗滤液深度脱氮效能[J].环境工程技术学报,2023,13(6):2126-2134 doi: 10.12153/j.issn.1674-991X.20230130
QIAO Z M,WEN C Y,TAI J F,et al.Advanced nitrogen removal efficiency of MSW leachate treated by SND with ASBR combined with SBBR process[J].Journal of Environmental Engineering Technology,2023,13(6):2126-2134 doi: 10.12153/j.issn.1674-991X.20230130
Citation: QIAO Z M,WEN C Y,TAI J F,et al.Advanced nitrogen removal efficiency of MSW leachate treated by SND with ASBR combined with SBBR process[J].Journal of Environmental Engineering Technology,2023,13(6):2126-2134 doi: 10.12153/j.issn.1674-991X.20230130

ASBR联合SBBR工艺同步硝化反硝化处理垃圾渗滤液深度脱氮效能

doi: 10.12153/j.issn.1674-991X.20230130
基金项目: 山东省重大科技创新工程项目(2019JZZY020308);济南市市中区重点产业领军人才创新团队项目
详细信息
    作者简介:

    乔壮明(1977—),男,高级工程师,主要从事水污染处理与资源化相关研究,mqhb@china-meiquan.com

    通讯作者:

    王凯(1983—),男,副教授,主要从事污水脱氮除磷相关研究,wangkai@sdjuz.edu.cn

  • 中图分类号: X703

Advanced nitrogen removal efficiency of MSW leachate treated by SND with ASBR combined with SBBR process

  • 摘要:

    为了提高垃圾渗滤液生化处理的TN去除率,采用厌氧序批式反应器(ASBR)串联序批式生物膜反应器(SBBR)处理化学需氧量(COD)为(5 700±500)mg/L、TN浓度为(210±50)mg/L的实际垃圾渗滤液。结果表明:ASBR的出水进入SBBR反应器进行深度脱氮,主要作用是调节后续SBBR进水的碳氮比(C/N),ASBR对渗滤液COD的去除率为90%。C/N是决定SBBR脱氮效率的关键,进水C/N调至4.8,在生物膜的作用下,SBBR仅通过厌氧搅拌和好氧阶段的同步硝化反硝化(SND)便可以实现对垃圾渗滤液的深度脱氮,出水TN浓度低于10 mg/L,周期运行时长也由第54天的24 h缩短至5.6 h。整个串联系统经过103 d的驯化和启动可以达到最佳的处理效果,出水COD、氨氮(NH4 +-N)、TN浓度分别为(380±10)、(1.0±0.5)、(5±5)mg/L,去除率分别达到93%、99%和95%。通过高通量测序分析可知,系统中变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes)相对丰度较高,分别为55.11%、21.32%。系统中具有反硝化作用的厚壁菌门(Firmicutes)相对丰度占比为2.81%,这可能是SBBR取得优秀脱氮效果的关键。在属水平下,系统中具有反硝化功能的菌种主要为ThaueraLimnobacter,在系统中占比分别为15.22%和2.84%,它们的存在可能是系统SND效果好的主要原因之一。

     

  • 图  1  ASBR+SBBR组合工艺示意

    Figure  1.  Schematic diagram of ASBR + SBBR system

    图  2  ASBR对垃圾渗滤液COD的去除效果

    Figure  2.  MSW leachate COD removal performance in ASBR

    图  3  SBBR对渗滤液COD的去除效果

    Figure  3.  MSW leachate COD removal performance in SBBR

    图  4  SBBR对渗滤液中不同形态氮的去除

    Figure  4.  Various forms of nitrogen removal performance in leachate by SBBR

    图  5  SBBR运行过程中反硝化+SND和内源反硝化脱氮量的变化

    Figure  5.  Denitrification amount by Denitrification+SND and endogenous denitrification during SBBR operation

    图  6  运行过程中TN浓度和TN去除率的变化

    Figure  6.  Changes of TN concentration and TN removal rate during operation

    图  7  SBBR中门水平上的细菌物种相对丰度

    Figure  7.  Relative abundance of bacterial species at phylum level within SBBR

    图  8  SBBR中属水平上相对丰度排名前10的细菌物种分类情况

    注:不同颜色的圆圈表示不同的分类水平,圆圈的大小代表该分类的相对丰度。分类名旁的2个数字均表示相对丰度占比,前者表示该分类在样本所有物种中的占比,后者表示该分类在样本所选取的10种物种中的占比。

    Figure  8.  Classification of bacterial species with relative abundance ranking top 10 at genus level within SBBR

    表  1  试验用垃圾渗滤液主要水质指标

    Table  1.   Characteristics of the leachate from MSW transfer station mg/L 

    CODBOD5NH4 +-N浓度TN浓度NOx -N浓度
    5 200~6 2002 560~2 800190~210200~2200.5~2.0
    下载: 导出CSV

    表  2  ASBR-SBBR串联系统对渗滤液COD、NH4 +-N和TN的处理效果

    Table  2.   Treatment effect of ASBR+SBBR system on COD, ammonia nitrogen and total nitrogen of MSW leachate

    项目CODNH4 +-NTN
    数值/
    (mg/L)
    去除率/%浓度/
    (mg/L)
    去除率/%浓度/
    (mg/L)
    去除率/%
    进水5 700210220
    出水<380>93<1>99<10>95
    下载: 导出CSV

    表  3  SBBR中活性污泥丰富度和多样性指数

    Table  3.   Richness and diversity indexes of activated sludge of SBBR

    样品
    名称
    观测到的
    物种数
    多样性指数
    ShannonSimpsonChao1ACE覆盖率
    SBBR1 0885.6030.9651 041.4201 076.2120.996
    下载: 导出CSV
  • [1] TALALAJ I A, BEIDKA P, BARTKOWSKA I. Treatment of landfill leachates with biological pretreatments and reverse osmosis[J]. Environmental Chemistry Letters, 2019, 17:1177-1193
    [2] ZHANG F Z, PENG Y Z, WANG S Y, et al. Efficient step-feed partial nitrification, simultaneous Anammox and denitrification (SPNAD) equipped with real-time control parameters treating raw mature landfill leachate[J]. Journal of Hazardous Materials,2019,364:163-172. doi: 10.1016/j.jhazmat.2018.09.066
    [3] 李钦钦, 赵坤.垃圾转运站渗滤液处理技术研究进展[J]. 辽宁化工,2022,51(10):1466-1469. doi: 10.14029/j.cnki.issn1004-0935.2022.10.035

    LI Q Q, ZHAO K. Research progress of the treatment technology of leachate from waste transfer station[J]. Liaoning Chemical Industry,2022,51(10):1466-1469. doi: 10.14029/j.cnki.issn1004-0935.2022.10.035
    [4] 代晋国, 宋乾武, 张玥, 等.新标准下我国垃圾渗滤液处理技术的发展方向[J]. 环境工程技术学报,2011,1(3):270-274. doi: 10.3969/j.issn.1674-991X.2011.03.045

    DAI J G, SONG Q W, ZHANG Y, et al. Directions for development of landfill leachate treatment technologies under the new standard in China[J]. Journal of Environmental Engineering Technology,2011,1(3):270-274. doi: 10.3969/j.issn.1674-991X.2011.03.045
    [5] CHEONG D Y, HANSEN C L. Effect of feeding strategy on the stability of anaerobic sequencing batch reactor responses to organic loading conditions[J]. Bioresource Technology,2008,99(11):5058-5068. doi: 10.1016/j.biortech.2007.08.084
    [6] OLIVEIRA R P, RATUSZNEI S M, RODRIGUES J A D, et al. Interaction effects of organic load and cycle time in an AsBr applied to a personal care industry wastewater treatment[J]. Journal of Environmental Management,2010,91(12):2499-2504. doi: 10.1016/j.jenvman.2010.07.015
    [7] 吴莉娜, 史枭, 张杰, 等.UASB1-A/O-UASB2深度处理垃圾渗滤液[J]. 环境科学研究,2015,28(8):1331-1336. doi: 10.13198/j.issn.1001-6929.2015.08.22

    WU L N, SHI X, ZHANG J, et al. Advanced treatment of landfill leachate using the UASB1-A/O-UASB2[J]. Research of Environmental Sciences,2015,28(8):1331-1336. doi: 10.13198/j.issn.1001-6929.2015.08.22
    [8] LUO Z Y, CHEN W M, WEN P, et al. Impact of leachate recirculation frequency on the conversion of carbon and nitrogen in a semi-aerobic bioreactor landfill[J]. Environmental Science and Pollution Research,2019,26(13):13354-13365. doi: 10.1007/s11356-019-04817-8
    [9] 王茜, 陈琴, 曾涛涛, 等.基于短程硝化工艺的垃圾渗滤液脱氮处理研究进展[J]. 环境工程技术学报,2016,6(2):127-132. doi: 10.3969/j.issn.1674-991X.2016.02.019

    WANG X, CHEN Q, ZENG T T, et al. Review of nitrogen removal for landfill leachate based on partial nitrification technology[J]. Journal of Environmental Engineering Technology,2016,6(2):127-132. doi: 10.3969/j.issn.1674-991X.2016.02.019
    [10] TSILOGEORGIS J, ZOUBOULIS A, SAMARAS P, et al. Application of a membrane sequencing batch reactor for landfill leachate treatment[J]. Desalination,2008,221(1/2/3):483-493.
    [11] TAKABATAKE H, SATOH H, MINO T, et al. Recovery of biodegradable plastics from activated sludge process[J]. Water Science and Technology,2000,42(3/4):351-356.
    [12] WANG K, WANG S Y, ZHU R L, et al. Advanced nitrogen removal from landfill leachate without addition of external carbon using a novel system coupling ASBR and modified SBR[J]. Bioresource Technology,2013,134:212-218. doi: 10.1016/j.biortech.2013.02.017
    [13] CHIU Y C, LEE L L, CHANG C N, et al. Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor[J]. International Biodeterioration & Biodegradation,2007,59(1):1-7.
    [14] YIN J, ZHANG P Y, LI F, et al. Simultaneous biological nitrogen and phosphorus removal with a sequencing batch reactor-biofilm system[J]. International Biodeterioration & Biodegradation,2015,103:221-226.
    [15] THIRD K A, BURNETT N, CORD-RUWISCH R. Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron donor in an SBR[J]. Biotechnology and Bioengineering,2003,83(6):706-720. doi: 10.1002/bit.10708
    [16] JIANG J F, MA L A, HAO L J, et al. Comparative study on advanced nitrogen removal of landfill leachate treated by SBR and SBBR[J]. Water,2021,13(22):3240. doi: 10.3390/w13223240
    [17] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [18] KRISHNA C, van LOOSDRECHT M C M. Effect of temperature on storage polymers and settleability of activated sludge[J]. Water Research,1999,33(10):2374-2382. doi: 10.1016/S0043-1354(98)00445-X
    [19] 冯旭东, 王斌, 潘登, 等.垃圾渗滤液SND生物脱氮的工程实践[J]. 环境工程,2004,22(6):7-10. doi: 10.3969/j.issn.1000-8942.2004.06.001

    FENG X D, WANG B, PAN D, et al. Application of simultaneous nitrification and denitrification in landfill leachate treament[J]. Environmental Engineering,2004,22(6):7-10. doi: 10.3969/j.issn.1000-8942.2004.06.001
    [20] 张绍青, 张立秋, 张朝升, 等.SBR反应器短程同步硝化反硝化处理垃圾渗滤液[J]. 中国给水排水,2014,30(3):10-13. doi: 10.19853/j.zgjsps.1000-4602.2014.03.003

    ZHANG S Q, ZHANG L Q, ZHANG C S, et al. Simultaneous nitrification and denitrification via nitrite for treatment of landfill leachate in sequencing batch reactor[J]. China Water & Wastewater,2014,30(3):10-13. doi: 10.19853/j.zgjsps.1000-4602.2014.03.003
    [21] 魏桃员, 陈玉婷, 何培弘, 等.SBR工艺处理早期垃圾渗滤液的试验研究[J]. 环境科学与技术,2016,39(4):107-113.

    WEI T Y, CHEN Y T, HE P H, et al. Experimental treatment of initial landfill leachate by SBR system[J]. Environmental Science & Technology,2016,39(4):107-113.
    [22] WANG X H, ZHU M H, LI F F, et al. Long-term effects of multi-walled carbon nanotubes on the performance and microbial community structures of an anaerobic granular sludge system[J]. Applied Microbiology and Biotechnology,2018,102(21):9351-9361. doi: 10.1007/s00253-018-9273-1
    [23] GAO H, MAO Y P, ZHAO X T, et al. Genome-centric metagenomics resolves microbial diversity and prevalent truncated denitrification pathways in a denitrifying PAO-enriched bioprocess[J]. Water Research,2019,155:275-287. doi: 10.1016/j.watres.2019.02.020
    [24] YANG Z C, ZHOU Q, SUN H M, et al. Metagenomic analyses of microbial structure and metabolic pathway in solid-phase denitrification systems for advanced nitrogen removal of wastewater treatment plant effluent: a pilot-scale study[J]. Water Research,2021,196:117067. doi: 10.1016/j.watres.2021.117067
    [25] CHEN X Z, WANG X J, ZHONG Z, et al. Biological nitrogen removal via combined processes of denitrification, highly efficient partial nitritation and Anammox from mature landfill leachate[J]. Environmental Science and Pollution Research,2020,27(23):29408-29421. doi: 10.1007/s11356-020-09185-2
    [26] SONG J Y, ZHANG W, GAO J F, et al. A pilot-scale study on the treatment of landfill leachate by a composite biological system under low dissolved oxygen conditions: performance and microbial community[J]. Bioresource Technology,2020,296:122344. doi: 10.1016/j.biortech.2019.122344
    [27] DÍEZ-VIVES C, GASOL J M, ACINAS S G. Evaluation of marine bacteroidetes-specific primers for microbial diversity and dynamics studies[J]. Microbial Ecology,2012,64(4):1047-1055. doi: 10.1007/s00248-012-0087-x
    [28] McILROY S J, KARST S M, NIERYCHLO M, et al. Genomic and in situ investigations of the novel uncultured Chloroflexi associated with 0092 morphotype filamentous bulking in activated sludge[J]. The ISME Journal,2016,10(9):2223-2234. doi: 10.1038/ismej.2016.14
    [29] YAN H H, HAN L, YIN Q, et al. Corn starch processing wastewater treated by a full-scale expanded granular sludge bed reactor and comprehensive analysis of microbial community at low and high organic loading rate[J]. IOP Conference Series:Earth and Environmental Science,2021,776(1):012003. doi: 10.1088/1755-1315/776/1/012003
    [30] ANTWI P, ZHANG D C, SU H, et al. Nitrogen removal from landfill leachate by single-stage anammox and partial-nitritation process: effects of microaerobic condition on performance and microbial activities[J]. Journal of Water Process Engineering,2020,38:101572. doi: 10.1016/j.jwpe.2020.101572
    [31] YUAN J, LAI Q, ZHENG T, et al. Novosphingobium indicum sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from a deep-sea environment[J]. International Journal of Systematic and Evolutionary Microbiology,2009,59(8):2084-2088. doi: 10.1099/ijs.0.002873-0
    [32] LIM J H, BAEK S H, LEE S T. Ferruginibacter alkalilentus gen. nov., sp. nov. and Ferruginibacter lapsinanis sp. nov., novel members of the family ‘Chitinophagaceae’ in the Phylum Bacteroidetes, isolated from freshwater sediment[J]. International Journal of Systematic and Evolutionary Microbiology,2009,59(10):2394-2399. doi: 10.1099/ijs.0.009480-0
    [33] LIANG Y H, LI D, ZENG H P, et al. Rapid start-up and microbial characteristics of partial nitrification granular sludge treating domestic sewage at room temperature[J]. Bioresource Technology,2015,196:741-745. doi: 10.1016/j.biortech.2015.08.003
    [34] GABARRÓ J, HERNÁNDEZ-DEL AMO E, GICH F, et al. Nitrous oxide reduction genetic potential from the microbial community of an intermittently aerated partial nitritation SBR treating mature landfill leachate[J]. Water Research,2013,47(19):7066-7077. ⊗ doi: 10.1016/j.watres.2013.07.057
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  67
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-20
  • 网络出版日期:  2023-11-24

目录

    /

    返回文章
    返回