留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固定化菌藻强化生物滞留池脱氮除磷效果

王小平 陈曜 黄茹婷 陈众

王小平,陈曜,黄茹婷,等.固定化菌藻强化生物滞留池脱氮除磷效果[J].环境工程技术学报,2023,13(6):2117-2125 doi: 10.12153/j.issn.1674-991X.20230125
引用本文: 王小平,陈曜,黄茹婷,等.固定化菌藻强化生物滞留池脱氮除磷效果[J].环境工程技术学报,2023,13(6):2117-2125 doi: 10.12153/j.issn.1674-991X.20230125
WANG X P,CHEN Y,HUANG R T,et al.Effect of immobilized bacteria and algae on enhanced nitrogen and phosphorus removal in bioretention tank[J].Journal of Environmental Engineering Technology,2023,13(6):2117-2125 doi: 10.12153/j.issn.1674-991X.20230125
Citation: WANG X P,CHEN Y,HUANG R T,et al.Effect of immobilized bacteria and algae on enhanced nitrogen and phosphorus removal in bioretention tank[J].Journal of Environmental Engineering Technology,2023,13(6):2117-2125 doi: 10.12153/j.issn.1674-991X.20230125

固定化菌藻强化生物滞留池脱氮除磷效果

doi: 10.12153/j.issn.1674-991X.20230125
基金项目: 安徽省教育厅自然科学重点项目(KJ2020A0017)
详细信息
    作者简介:

    王小平(1968—),男,高级工程师,主要从事生态环境保护及环境规划研究,411286073@qq.com

  • 中图分类号: X52,TU992

Effect of immobilized bacteria and algae on enhanced nitrogen and phosphorus removal in bioretention tank

  • 摘要:

    针对传统生物滞留池对氮磷去除效果较差的问题,开展固定化菌藻填料淋洗试验和不同配比固定化菌藻填料的生物滞留池脱氮除磷效果研究。将固定化菌藻填料在去离子水中连续淋洗,研究营养物的释放特征,同时分别设置固定化菌藻填料占填料层的2/5(G1组)和占填料层的4/5(G2组),分析其在不同淹没高度(0、30、60 cm)和落干期下的脱氮除磷效果。结果表明:固定化菌藻填料在前8次淋洗中,未检测出总磷(TP)、总氮(TN),菌藻经过固定化后适合作为生物滞留池填料的改良剂;生物滞留池对氨氮(NH3-N)、TN的去除率随淹没高度的增加而提高,淹没高度为60 cm时,G1、G2组对NH3-N的平均去除率分别为68.25%和72.00%,对TN的平均去除率分别为64.20%和68.70%;淹没高度分别为0和60 cm时,G1、G2组对TP的去除率分别为79.50%和78.00%、70.05%和71.00%,而淹没高度为30 cm时,G2组对TP的去除率最高,达86.00%;落干期从2 d延长至8 d时,NH3-N和TN去除率分别从最高的69.38%和67.10%降至最低的55.13%和57.70%,对TP的去除率从最低的75.50%升至90.00%。固定化菌藻填料有效提高了生物滞留池脱氮除磷性能。

     

  • 图  1  试验柱结构示意

    Figure  1.  Structure of experimental columns

    图  2  固定化菌藻填料TP和TN累计淋失量(以每g藻粉计)

    Figure  2.  Cumulative TN and TP leaching amount from immobilized bacteria and algae filler (calculated per gram of algae powder)

    图  3  各处理组在填料层1/2处的COD变化和去除率

    Figure  3.  Concentration changes and removal rates of COD at 1/2 of the filler layer of each treatment group

    图  4  各处理组在出水口处的COD变化和去除率

    Figure  4.  Concentration changes and removal rates of COD at the outlet of each treatment group

    图  5  各处理组在填料层1/2处的NH3-N、TN浓度变化和去除率

    Figure  5.  Concentration changes and removal rates of NH3-N and TN at 1/2 of the filler layer of each treatment group

    图  6  各处理组在出水口处的NH3-N、TN浓度变化和去除率

    Figure  6.  Concentration changes and removal rates of NH3-N and TN at the outlet of each treatment group

    图  7  各处理组在填料层1/2处的TP浓度变化和去除率

    Figure  7.  Concentration changes and removal rates of TP at 1/2 of the filler layer of each treatment group

    图  8  各处理组在出口处的TP浓度变化和TP去除率

    Figure  8.  Concentration changes and removal rates of TP at the outlet of each treatment group

    图  9  不同落干期下各处理组对氮磷的去除效果

    Figure  9.  Removal of nitrogen and phosphorus by each treatment group at different durations of drying periods

  • [1] LI J K, LI N, LIU F, et al. Development and optimization of bioretention systems with modified fillers of corn straw biochar[J]. Water, Air, & Soil Pollution,2021,232(9):383.
    [2] LIU C, LU J, LIU J Q, et al. Effects of lead (Pb) in stormwater runoff on the microbial characteristics and organics removal in bioretention systems[J]. Chemosphere,2020,253:126721. doi: 10.1016/j.chemosphere.2020.126721
    [3] HE Q M, LIN Z Z, DONG P, et al. Decontamination performance of a bioretention system using a simple sand-based filler proportioning method[J]. Environmental Technology,2022,43(5):709-717. doi: 10.1080/09593330.2020.1803416
    [4] JIANG C B, LI J K, LI H E, et al. Remediation and accumulation characteristics of dissolved pollutants for stormwater in improved bioretention basins[J]. Science of the Total Environment,2019,685:763-771. doi: 10.1016/j.scitotenv.2019.06.246
    [5] YAN Q, DAVIS A P, JAMES B R. Enhanced organic phosphorus sorption from urban stormwater using modified bioretention media: batch studies[J]. Journal of Environmental Engineering,2016,142(4):1-11.
    [6] 张哲源. 生物滞留池生物质炭填料对PAHs的去除效果研究[D]. 北京: 北京建筑大学, 2022.
    [7] 朋四海, 黄俊杰, 李田.过滤型生物滞留池径流污染控制效果研究[J]. 给水排水,2014,50(6):38-42.

    PENG S H, HUANG J J, LI T. Study on control effect of runoff pollution in filter biological retention pond[J]. Water & Wastewater Engineering,2014,50(6):38-42.
    [8] 沈若非, 肖娴, 涂保华, 等.生物炭固定化复合菌群修复石油烃污染地下水[J]. 环境化学,2022,41(10):3435-3446.

    SHEN R F, XIAO X, TU B H, et al. Remediation of petroleum hydrocarbon contaminated groundwater by biochar immobilized bacterial consortia[J]. Environmental Chemistry,2022,41(10):3435-3446.
    [9] 刘双, 王思宇, 代云容.珠线型载漆酶电纺纤维膜对水中菲的净化性能和机理[J]. 环境工程技术学报,2019,9(4):389-396.

    LIU S, WANG S Y, DAI Y R. Purification performance and mechanism of phenanthrene in water by beads-in-string structural laccase-carrying electrospun fibrous membranes[J]. Journal of Environmental Engineering Technology,2019,9(4):389-396.
    [10] 余泽海, 胡云霜, 张晏菘, 等.聚乙烯醇/海藻酸钠/水性聚氨酯复合载体制备及固定化硝化菌降解氨氮废水的研究[J]. 水处理技术,2022,48(11):94-97.

    YU Z H, HU Y S, ZHANG Y S, et al. Preparation of polyvinyl alcohol/sodium alginate/waterborne polyurethane composite carrier and degradation of ammonia nitrogen wastewater by immobilization of nitrifying bacteria[J]. Technology of Water Treatment,2022,48(11):94-97.
    [11] 尹超, 李莹, 张婷月, 等.好氧反硝化菌的固定化及其效能研究[J]. 华东师范大学学报(自然科学版),2021(4):1-7.

    YIN C, LI Y, ZHANG T Y, et al. Immobilization and efficacy of an aerobic denitrifier[J]. Journal of East China Normal University (Natural Science),2021(4):1-7.
    [12] 杨利伟, 张爽, 杨周, 等.径流中氮和磷在生物滞留池中的迁移及去除机理[J]. 中国给水排水,2019,35(9):133-138.

    YANG L W, ZHANG S, YANG Z, et al. Migration and removal mechanism of nitrogen and phosphorus of surface runoff in bioretention tank[J]. China Water & Wastewater,2019,35(9):133-138.
    [13] 卢少勇, 万正芬, 李锋民, 等.29种湿地填料对氨氮的吸附解吸性能比较[J]. 环境科学研究,2016,29(8):1187-1194.

    LU S Y, WAN Z F, LI F M, et al. Ammonia nitrogen adsorption and desorption characteristics of twenty-nine kinds of constructed wetland substrates[J]. Research of Environmental Sciences,2016,29(8):1187-1194.
    [14] GREBEL J E, MOHANTY S K, TORKELSON A A, et al. Engineered infiltration systems for urban stormwater reclamation[J]. Environmental Engineering Science,2013,30(8):437-454. doi: 10.1089/ees.2012.0312
    [15] DAVIS A P, SHOKOUHIAN M, SHARMA H, et al. Laboratory study of biological retention for urban stormwater management[J]. Water Environment Research,2001,73(1):5-14. doi: 10.2175/106143001X138624
    [16] 朱铭捷, 胡洪营, 何苗, 等.河道滞留塘系统对污染河水中氮磷的去除特性[J]. 生态环境,2006,15(1):11-14.

    ZHU M J, HU H Y, HE M, et al. NH3-N and TP removal performance of polluted river water with on-stream detention pond system[J]. Ecology and Environment,2006,15(1):11-14.
    [17] 冉阳. 改良生物滞留系统强化对氮磷的去除研究[D]. 株洲: 湖南工业大学, 2022.
    [18] 张瑞斌, 潘卓兮, 王乐阳, 等.固定化菌藻填料强化人工湿地脱氮除磷效果研究[J]. 环境工程技术学报,2021,11(1):91-96.

    ZHANG R B, PAN Z X, WANG L Y, et al. Effect of immobilized bacteria and algae filler on enhanced nitrogen and phosphorus removal in constructed wetland[J]. Journal of Environmental Engineering Technology,2021,11(1):91-96.
    [19] 王亚军, 耿冲冲, 许妍, 等.不同强化手段对生物滞留池脱氮除磷性能的影响[J]. 中国给水排水,2020,36(19):77-82.

    WANG Y J, GENG C C, XU Y, et al. Effect of different enhanced methods on efficiency of denitrification and phosphorus removal in bioretention cell[J]. China Water & Wastewater,2020,36(19):77-82.
    [20] 熊家晴, 何一帆, 白雪琛, 等.改良填料生物滞留池对雨水径流中磷的去除效果[J]. 环境工程学报,2019,13(9):2164-2172.

    XIONG J Q, HE Y F, BAI X C, et al. Removal effect of phosphorus in rain-runoff by the media-improved bioretention tank[J]. Chinese Journal of Environmental Engineering,2019,13(9):2164-2172.
    [21] 方俊华, 张啸, 荆慧娟.磁化改性污泥基生物炭对水中磷的吸附[J]. 水处理技术,2021,47(12):37-41.

    FANG J H, ZHANG X, JING H J. Adsorption of phosphorus in water by magnetized modified sludge-based biochar[J]. Technology of Water Treatment,2021,47(12):37-41.
    [22] 张鵾, 梁英, 马效芳, 等.混凝泥渣生物滞留池脱氮除磷性能的实验研究[J]. 环境工程,2016,34(增刊 1):326-331.

    ZHANG K, LIANG Y, MA X F, et al. Experimental research about denitrification and dephosphorization efficiency of WTR bioretention cells[J]. Environmental Engineering,2016,34(Suppl 1):326-331.
    [23] BALDWIN D S, MITCHELL A M. The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-floodplain systems: a synthesis[J]. Regulated Rivers: Research & Management,2000,16(5):457-467.
    [24] 万哲希, 刘雨童, 李田.木屑强化生物滞留池对径流中营养物质的长期有效去除[J]. 同济大学学报(自然科学版),2019,47(2):215-221.

    WAN Z X, LIU Y T, LI T. Long-term and effective removal of nutrients in stormwater using a field-scale wood-chip bioretention system[J]. Journal of Tongji University (Natural Science),2019,47(2):215-221.
    [25] 戴云飞, 杨泽玉, 陈颖, 等.聚乙烯醇-海藻酸钠-活性炭固定化菌球处理二氯甲烷的研究[J]. 环境科学学报,2021,41(2):430-439.

    DAI Y F, YANG Z Y, CHEN Y, et al. Removel of DCM by microorganism cells immobilized into polyvinyl alcohol-alginate-activated carbon beads[J]. Acta Scientiae Circumstantiae,2021,41(2):430-439.
    [26] 袁敏, 刘晓冰, 唐美珍, 等.生物炭固定菌强化人工湿地对低温污水中氮素去除的模拟研究[J]. 生态与农村环境学报,2018,34(5):463-468.

    YUAN M, LIU X B, TANG M Z, et al. Study on removal of nitrogen from low temperature sewage by Pseudomonas flava WD-3 immobilized biochar in constructed wetland[J]. Journal of Ecology and Rural Environment,2018,34(5):463-468.
    [27] 唐青青.蛋白核小球藻对单一及复合污染水中重金属的生物吸附研究[D].杭州:浙江工商大学,2015.
  • 加载中
图(9)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  50
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-17
  • 网络出版日期:  2023-11-24

目录

    /

    返回文章
    返回