留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

藻炭改性电极强化微生物燃料电池产电及去除硝基苯性能

徐戴非 吴兵党 杨晶晶 沈正栋 黄天寅

徐戴非,吴兵党,杨晶晶,等.藻炭改性电极强化微生物燃料电池产电及去除硝基苯性能[J].环境工程技术学报,2023,13(6):2092-2104 doi: 10.12153/j.issn.1674-991X.20230092
引用本文: 徐戴非,吴兵党,杨晶晶,等.藻炭改性电极强化微生物燃料电池产电及去除硝基苯性能[J].环境工程技术学报,2023,13(6):2092-2104 doi: 10.12153/j.issn.1674-991X.20230092
XU D F,WU B D,YANG J J,et al.Removal efficiency of nitrobenzene and electricity generation by microbial fuel cell with algal biochar modified electrode[J].Journal of Environmental Engineering Technology,2023,13(6):2092-2104 doi: 10.12153/j.issn.1674-991X.20230092
Citation: XU D F,WU B D,YANG J J,et al.Removal efficiency of nitrobenzene and electricity generation by microbial fuel cell with algal biochar modified electrode[J].Journal of Environmental Engineering Technology,2023,13(6):2092-2104 doi: 10.12153/j.issn.1674-991X.20230092

藻炭改性电极强化微生物燃料电池产电及去除硝基苯性能

doi: 10.12153/j.issn.1674-991X.20230092
基金项目: 国家自然科学基金面上项目(52070137);苏州市社会发展科技创新项目(SS202107);苏州市姑苏创新创业领军人才计划项目(ZXL2022500)
详细信息
    作者简介:

    徐戴非(1998—),男,硕士研究生,主要从事水污染控制研究,a1013699818@163.com

    通讯作者:

    黄天寅(1975—),男,教授,主要从事水环境治理与水生态修复研究,huangtianyin111@163.com

  • 中图分类号: X703

Removal efficiency of nitrobenzene and electricity generation by microbial fuel cell with algal biochar modified electrode

  • 摘要:

    开发利于微生物富集和优异导电性能的电极是提高微生物燃料电池(MFC)性能的关键。通过碱活化和酸活化方式制备螺旋藻生物炭(简称藻炭)并将其修饰于阳极炭毡(CF),以硝基苯为难降解污染物代表,通过检测电极电化学性能和污染物降解过程,探究基于藻碳MFC产电及转化污染物的性能。结果表明:在700 ℃-NaOH改性藻炭修饰炭毡的电极体系(NaOH-AC700/CF),MFC电压最高可达670 mV,比CF体系高26%,且驯化时间由7 d缩短至2 d。修饰电极体系产电的同时高效降解污染物,阴极对硝基苯的去除率最高可达99.9%;相比于CF体系,NaOH-AC700/CF体系的降解效率提高了22.1%,苯胺生成率提高了123.3%。微生物种类分析结果表明,电极表面的产电菌主要为弧形杆菌属(Arcobacter)和铜绿假单胞菌属(Pseudomonas),且在NaOH-AC700/CF阳极表面产电菌丰度最高,因而利于MFC产电以及硝基苯的还原。

     

  • 图  1  MFC反应器原理

    Figure  1.  MFC reactor schematic diagram

    图  2  MFC反应器装置

    Figure  2.  Device diagram of MFC reactor

    图  3  藻炭材料SEM图

    Figure  3.  SEM diagram of algal biochar

    图  4  MFC阳极表面微生物附着情况SEM图

    Figure  4.  SEM diagram of microorganism adhesion on MFC anode surface

    图  5  藻炭修饰电极CV曲线

    注:电势为测试电极与Ag/AgCl电极间的电位差。

    Figure  5.  CV diagram of algal biochar modified electrodes

    图  6  不同藻炭修饰阳极MFC驯化阶段和稳定阶段的电压输出

    Figure  6.  Voltage output of MFC with different algal biochar modified anodes at acclimation stage and stabilization stage

    图  7  不同藻炭修饰阳极MFC功率密度曲线与极化曲线

    Figure  7.  MFC power density curve and polarization curve of different algal biochar modified anodes

    图  8  不同阳极MFC体系硝基苯降解、产物生成及电压变化

    Figure  8.  Nitrobenzene degradation, product formation and voltage variation in different anode MFC systems

    图  9  不同初始pH条件下硝基苯降解和产物生成变化

    Figure  9.  Nitrobenzene degradation and product formation changes at various initial pH

    图  10  各条件下反应终点产物占比

    Figure  10.  Proportion of end products under various conditions

    图  11  硝基苯阴极还原降解路径

    Figure  11.  Cathodic reduction degradation pathway of nitrobenzene

    图  12  藻炭修饰阳极微生物驯化前后属水平下菌群相对丰度(排名前20)

    Figure  12.  Relative abundance of bacteria at genus level before and after acclimation of algal biochar modified anodes (top 20 genus)

    表  1  不同电极的MFC反应器名称

    Table  1.   MFC reactor with different electrodes

    编号阳极阴极反应器名称
    1CF泡沫镍CF- MFC
    2BC700/CF泡沫镍BC700/CF-MFC
    3HCl-AC700/CF泡沫镍HCl-AC700/CF-MFC
    4NaOH-AC700/CF泡沫镍NaOH-AC700/CF-MFC
    下载: 导出CSV

    表  2  不同类型藻炭比表面积

    Table  2.   Specific surface area of different types of algal biochar

    藻炭活化方式及名称比表面积/(m2/g)
    未活化BC5000.846 6
    BC7000.762 0
    酸活化HCl-AC5000.481 3
    HCl-AC7000.158 3
    碱活化NaOH-AC50046.726 4
    NaOH-AC700664.203 4
    下载: 导出CSV

    表  3  生物种群Alpha多样性分析

    Table  3.   Alpha diversity analysis of biological population

    样品Ace
    指数
    Chao1
    指数
    Shannon
    指数
    Simpson
    指数
    覆盖率
    接种污泥148.794146.55.140.9381
    CF139.0001395.8190.9691
    BC700/CF133.237138.54.8630.9251
    HCl-AC700/CF137.7431383.8220.8351
    NaOH-AC700/CF129.6931292.5530.5591
    下载: 导出CSV
  • [1] XU P, XU H, SHI Z. A novel bio-electro-Fenton process with FeVO4/CF cathode on advanced treatment of coal gasification wastewater[J]. Separation and Purification Technology,2018,194:457-461. doi: 10.1016/j.seppur.2017.11.073
    [2] BOND D R, LOVLEY D R. Electricity production by Geobacter sulfurreducens attached to electrodes[J]. Applied and Environmental Microbiology,2003,69(3):1548-1555. doi: 10.1128/AEM.69.3.1548-1555.2003
    [3] MODESTRA J A, CHIRANJEEVI P, MOHAN S V. Cathodic material effect on electron acceptance towards bioelectricity generation and wastewater treatment[J]. Renewable Energy,2016,98:178-187. doi: 10.1016/j.renene.2016.03.066
    [4] CHAKRABORTY I, SATHE S M, DUBEY B K, et al. Waste-derived biochar: applications and future perspective in microbial fuel cells[J]. Bioresource Technology,2020,312:123587. doi: 10.1016/j.biortech.2020.123587
    [5] BOND D R, HOLMES D E, TENDER L M, et al. Electrode-reducing microorganisms that harvest energy from marine sediments[J]. Science,2002,295(5554):483-485. doi: 10.1126/science.1066771
    [6] WU Y N, WANG L, JIN M, et al. Simultaneous copper removal and electricity production and microbial community in microbial fuel cells with different cathode catalysts[J]. Bioresource Technology,2020,305:123166. doi: 10.1016/j.biortech.2020.123166
    [7] OON Y S, ONG S A, HO L N, et al. Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation[J]. Journal of Hazardous Materials,2017,325:170-177. doi: 10.1016/j.jhazmat.2016.11.074
    [8] PUIG S, SERRA M, VILAR-SANZ A, et al. Autotrophic nitrite removal in the cathode of microbial fuel cells[J]. Bioresource Technology,2011,102(6):4462-4467. doi: 10.1016/j.biortech.2010.12.100
    [9] LOGAN B E. Scaling up microbial fuel cells and other bioelectrochemical systems[J]. Applied Microbiology and Biotechnology,2010,85(6):1665-1671. doi: 10.1007/s00253-009-2378-9
    [10] 李朝明, 许丹, 黄铭意, 等.不同阳极设置对人工湿地-微生物燃料电池脱氮及产能的影响[J]. 环境工程技术学报,2023,13(1):205-213.

    LI C M, XU D, HUANG M Y, et al. Effects of different anode settings on the performance of nitrogen removal and electrogenesis capacity in constructed wetland-microbial fuel cells[J]. Journal of Environmental Engineering Technology,2023,13(1):205-213.
    [11] ALI YAQOOB A, IBRAHIM M N M, RODRÍGUEZ-COUTO S. Development and modification of materials to build cost-effective anodes for microbial fuel cells (MFCs): an overview[J]. Biochemical Engineering Journal,2020,164:107779. doi: 10.1016/j.bej.2020.107779
    [12] KIM M, KIM H W, NAM J Y, et al. Recent progress of nanostructure modified anodes in microbial fuel cells[J]. Journal of Nanoscience and Nanotechnology,2015,15(9):6891-6899. doi: 10.1166/jnn.2015.10723
    [13] CAI T, MENG L J, CHEN G, et al. Application of advanced anodes in microbial fuel cells for power generation: a review[J]. Chemosphere,2020,248:125985. doi: 10.1016/j.chemosphere.2020.125985
    [14] HOJJATI-NAJAFABADI A, DAVAR F, ENTESHARI Z, et al. Antibacterial and photocatalytic behaviour of green synthesis of Zn0.95Ag0.05O nanoparticles using herbal medicine extract[J]. Ceramics International,2021,47(22):31617-31624. doi: 10.1016/j.ceramint.2021.08.042
    [15] GURAV R, BHATIA S K, CHOI T R, et al. Adsorptive removal of crude petroleum oil from water using floating pinewood biochar decorated with coconut oil-derived fatty acids[J]. Science of the Total Environment,2021,781:146636. doi: 10.1016/j.scitotenv.2021.146636
    [16] 熊江磊, 罗嘉豪, 严群.改性蓝藻生物炭促进生物电化学系统阴极氢自养反硝化过程研究[J]. 环境工程技术学报,2022,12(5):1640-1646.

    XIONG J L, LUO J H, YAN Q. Research on modified cyanobacterial biochar promoting cathodic hydrogen autotrophic denitrification in bioelectrochemical system[J]. Journal of Environmental Engineering Technology,2022,12(5):1640-1646.
    [17] 李怡冰, 李涵, 黄文轩, 等.生物炭的制备及其在强化电子传递和催化性能等方面的研究进展[J]. 环境科学研究,2021,34(5):1157-1167.

    LI Y B, LI H, HUANG W X, et al. Research progress on the biochar production and its applications in enhancing electron transport and catalysis performance[J]. Research of Environmental Sciences,2021,34(5):1157-1167.
    [18] WANG B W, WANG Z F, JIANG Y, et al. Enhanced power generation and wastewater treatment in sustainable biochar electrodes based bioelectrochemical system[J]. Bioresource Technology,2017,241:841-848. doi: 10.1016/j.biortech.2017.05.155
    [19] LAN L H, LI J, FENG Q, et al. Enhanced current production of the anode modified by microalgae derived nitrogen-rich biocarbon for microbial fuel cells[J]. International Journal of Hydrogen Energy,2020,45(6):3833-3839. doi: 10.1016/j.ijhydene.2019.06.199
    [20] LIN Y Z, YIN J, WANG J H, et al. Performance and microbial community in hybrid anaerobic baffled reactor-constructed wetland for nitrobenzene wastewater[J]. Bioresource Technology,2012,118:128-135. doi: 10.1016/j.biortech.2012.05.056
    [21] DONG X Q, ZHANG Y N, XU Y W, et al. Catalytic mechanism study on manganese oxide in the catalytic supercritical water oxidation of nitrobenzene[J]. RSC Advances,2015,5(59):47488-47497. doi: 10.1039/C5RA04322K
    [22] KUŞÇU Ö S, SPONZA D T. Effect of increasing nitrobenzene loading rates on the performance of anaerobic migrating blanket reactor and sequential anaerobic migrating blanket reactor/completely stirred tank reactor system[J]. Journal of Hazardous Materials,2009,168(1):390-399. doi: 10.1016/j.jhazmat.2009.02.060
    [23] WEI W, SUN R, JIN Z, et al. Hydroxyapatite-gelatin nanocomposite as a novel adsorbent for nitrobenzene removal from aqueous solution[J]. Applied Surface Science,2014,292:1020-1029. doi: 10.1016/j.apsusc.2013.12.127
    [24] 夏甫, 杨昱, 万朔阳, 等.预处理方式对氧化-还原联合技术修复硝基苯污染地下水的影响[J]. 环境科学研究,2020,33(9):2001-2010.

    XIA F, YANG Y, WAN S Y, et al. Influence of pre-treatment on remediation of nitrobenzene contaminated groundwater by combined oxidation-reduction techniques[J]. Research of Environmental Sciences,2020,33(9):2001-2010.
    [25] ZHANG W, CHEN L, CHEN H, et al. The effect of Fe0/Fe2+/Fe3+ on nitrobenzene degradation in the anaerobic sludge[J]. Journal of Hazardous Materials,2007,143(1/2):57-64.
    [26] LU Y, XIE Q Q, TANG L, et al. The reduction of nitrobenzene by extracellular electron transfer facilitated by Fe-bearing biochar derived from sewage sludge[J]. Journal of Hazardous Materials,2021,403:123682. doi: 10.1016/j.jhazmat.2020.123682
    [27] 刘荣华. 微生物燃料电池中污染物的强化降解[D]. 合肥: 中国科学技术大学, 2014.
    [28] 侯俊先. 微生物燃料电池阳极改性及生物膜内部传递现象的研究[D]. 北京: 北京工业大学, 2018.
    [29] 刘昊佳. 基于二维层状电极的高性能微生物燃料电池[D]. 南京: 东南大学, 2020.
    [30] LIU G L, YATES M D, CHENG S A, et al. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments[J]. Bioresource Technology,2011,102(15):7301-7306. doi: 10.1016/j.biortech.2011.04.087
    [31] 彭本齐. 基于纳米硅藻材料的MFC阳极制备及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
    [32] HUGGINS T, WANG H M, KEARNS J, et al. Biochar as a sustainable electrode material for electricity production in microbial fuel cells[J]. Bioresource Technology,2014,157:114-119. doi: 10.1016/j.biortech.2014.01.058
    [33] 程浩毅. 生物电化学系统定向还原硝基苯及能量循环补偿模式研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
    [34] HARWOOD W H, HURD R M, JORDAN W H Jr. Electrochemical reduction of nitrobenzene at controlled potentials[J]. Industrial & Engineering Chemistry Process Design and Development,1963,2(1):72-77.
    [35] 李婉君. 藻/菌微生物燃料电池pH自中和、降解偶氮染料与产电研究[D]. 广州: 华南理工大学, 2014.
    [36] 徐文英, 樊金红, 高廷耀.硝基苯类物质在铜电极上的电还原特性及pH的影响[J]. 环境科学,2005,26(2):102-107.

    XU W Y, FAN J H, GAO T Y. Electrochemical reduction characteristics of nitro-benzene compounds at the copper electrode and the influence of pH on reduction[J]. Environmental Science,2005,26(2):102-107.
    [37] 黄子安, 李陵岚, 刘辉.氧化偶氮苯类化合物合成研究进展[J]. 化学试剂,2020,42(11):1318-1326.

    HUANG Z A, LI L L, LIU H. Progress in the synthesis of azoxybenzene compound[J]. Chemical Reagents,2020,42(11):1318-1326.
    [38] JIN M, LIU Y Y, ZHANG X, et al. Selective electrocatalytic hydrogenation of nitrobenzene over copper-platinum alloying catalysts: experimental and theoretical studies[J]. Applied Catalysis B:Environmental,2021,298:120545. doi: 10.1016/j.apcatb.2021.120545
    [39] 庞绍婕. 改性电极微生物燃料电池处理硝基苯废水的性能研究[D]. 太原: 太原理工大学, 2021.
    [40] MU Y, ROZENDAL R A, RABAEY K, et al. Nitrobenzene removal in bioelectrochemical systems[J]. Environmental Science & Technology,2009,43(22):8690-8695.
    [41] YATES M D, KIELY P D, CALL D F, et al. Convergent development of anodic bacterial communities in microbial fuel cells[J]. The ISME Journal,2012,6(11):2002-2013. doi: 10.1038/ismej.2012.42
    [42] 杨思霞, 邵琼丽, 许坤德, 等.电化学参数影响下微生物电解池阳极膜上电活性微生物群落的变化[J]. 化学研究与应用,2022,34(3):549-557.

    YANG S X, SHAO Q L, XU K D, et al. Community evolution of exoelectrogens on anodic biofilm in microbial electrolysis cells: influence of electrochemical parameters[J]. Chemical Research and Application,2022,34(3):549-557.
    [43] 高崇洋, 吴唯民, 王爱杰, 等.平行启动的微生物燃料电池阳极微生物群落差异性解析[J]. 哈尔滨工业大学学报,2016,48(2):15-20.

    GAO C Y, WU W M, WANG A J, et al. Comparison of anodic microbial communities in parallel-operated microbial fuel cells[J]. Journal of Harbin Institute of Technology,2016,48(2):15-20.
    [44] 谢丽, 马玉龙.微生物燃料电池中产电微生物的研究进展[J]. 宁夏农林科技,2011,52(7):104-107.

    XIE L, MA Y L. Progress in research of electricigens in microbial fuel cell[J]. Ningxia Journal of Agriculture and Forestry Science and Technology,2011,52(7):104-107. ⊗
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  61
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-07
  • 网络出版日期:  2023-11-24

目录

    /

    返回文章
    返回