留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天然含铁锰矿对砷的高效去除性能与机制研究

田周炀 郑倩 杜晓丽 陈成 李传维 涂书新

田周炀,郑倩,杜晓丽,等.天然含铁锰矿对砷的高效去除性能与机制研究[J].环境工程技术学报,2023,13(6):2143-2153 doi: 10.12153/j.issn.1674-991X.20230058
引用本文: 田周炀,郑倩,杜晓丽,等.天然含铁锰矿对砷的高效去除性能与机制研究[J].环境工程技术学报,2023,13(6):2143-2153 doi: 10.12153/j.issn.1674-991X.20230058
TIAN Z Y,ZHENG Q,DU X L,et al.Study on efficient arsenic removal performance and mechanism of natural ferromanganese ore[J].Journal of Environmental Engineering Technology,2023,13(6):2143-2153 doi: 10.12153/j.issn.1674-991X.20230058
Citation: TIAN Z Y,ZHENG Q,DU X L,et al.Study on efficient arsenic removal performance and mechanism of natural ferromanganese ore[J].Journal of Environmental Engineering Technology,2023,13(6):2143-2153 doi: 10.12153/j.issn.1674-991X.20230058

天然含铁锰矿对砷的高效去除性能与机制研究

doi: 10.12153/j.issn.1674-991X.20230058
基金项目: 国家自然科学基金项目(42277392);国家重点研发计划项目(2018YFC1800305)
详细信息
    作者简介:

    田周炀(1999—),女,硕士研究生,研究方向为重金属污染修复,tianzy@webmail.hzau.edu.cn

    通讯作者:

    涂书新(1962—),男,教授,主要从事环境污染与修复,stu@mail.hzau.edu.cn

  • 中图分类号: X52

Study on efficient arsenic removal performance and mechanism of natural ferromanganese ore

  • 摘要:

    为开发高效、廉价的水体As(Ⅲ)去除材料,采用天然铁锰矿(NFM)作为吸附剂,通过动力学、热力学、等温吸附以及吸附/解吸试验评估其对As(Ⅲ)的吸附性能,结合傅里叶变换红外光谱、扫描电镜以及X射线光电子能谱(XPS)等表征手段进行机理分析,并与铁锰二元氧化物(FMO)、水钠锰矿(Bir)和针铁矿(Goe)的吸附特性进行对比。结果表明:NFM主要由锰氧化物和铁氧化物组成,铁锰摩尔比为6∶1,比表面积为280.4 m2/g,对As(Ⅲ)的饱和吸附容量为48.3 mg/g。Freundlich模型和准二级动力学模型能较好地拟合NFM的吸附过程。XPS等分析表明,NFM的吸附和氧化的协同作用是去除As(Ⅲ)的关键因素。其中,锰氧化物展示出优异的氧化As(Ⅲ)的能力,而铁氧化物具有强的吸附作用。

     

  • 图  1  吸附剂的XRD与FTIR图谱

    Figure  1.  XRD spectrum and FTIR spectra of original absorbents

    图  2  吸附剂对As(Ⅲ)的吸附等温线

    Figure  2.  Adsorption isotherm plot of As(Ⅲ) on adsorbents

    图  3  ln Kc与1/T×10−3的拟合线

    Figure  3.  Fitting plot of ln Kc versus 1/T×10−3

    图  4  吸附剂对As(Ⅲ)的吸附动力学

    Figure  4.  Adsorption kinetics of As(Ⅲ) on adsorbents

    图  5  pH对吸附剂吸附As(Ⅲ)的影响

    Figure  5.  Effect of pH on the adsorption of As(Ⅲ) on adsorbents

    图  6  吸附剂对As(Ⅲ)的吸附和解吸

    Figure  6.  Adsorption and desorption of As(Ⅲ) on adsorbents

    图  7  吸附剂吸附As(Ⅲ)前后的XRD图谱

    Figure  7.  XRD spectrum of absorbents before and after absorption of As(Ⅲ)

    图  8  吸附剂吸附As(Ⅲ)前后的FTIR光谱

    Figure  8.  FTIR spectra of absorbents before and after absorption of As(Ⅲ)

    图  9  吸附剂吸附砷前后的SEM图谱

    Figure  9.  SEM micrographs of absorbents before and after absorption of As(Ⅲ)

    图  10  NFM吸附As(Ⅲ)前后的XPS图谱

    Figure  10.  XPS spectra of NFM before and after adsorption of As(Ⅲ)

    表  1  NFM元素含量分析

    Table  1.   Percentage content of each element of NFM % 

    元素含量元素含量
    Fe72.32P0.76
    Mn11.78Zn0.09
    Ca0.33Ni0.04
    Si3.46As0.01
    Al2.52Pb0.02
    Mg0.27Cr0.01
      注:仅显示含量大于0.01%的元素。
    下载: 导出CSV

    表  2  吸附剂的Fe、Mn含量和比表面积

    Table  2.   Fe, Mn content and specific surface area of the adsorbent

    吸附剂元素含量/%铁锰比比表面积/(m2/g)
    FeMn
    NFM72.311.81∶6.12280.4
    FMO46.913.53.47∶1268.8
    Bir52.3102.9
    Goe67.495.8
    下载: 导出CSV

    表  3  吸附剂对As(Ⅲ)的吸附的Langmuir和Freundlich模型参数

    Table  3.   Langmuir and Freundlich model parameters for adsorption of As(Ⅲ) on adsorbents

    吸附剂Langmuir模型Freundlich模型
    qmbR2KfnR2
    NFM48.30.06490.9628.073.360.998
    FMO70.90.350 00.97317.43.090.957
    Bir33.20.006 00.6620.861.910.977
    Goe44.30.038 00.9055.813.040.984
    下载: 导出CSV

    表  4  不同温度下As(Ⅲ)在吸附剂上吸附的热力学参数

    Table  4.   Thermodynamic parameters of As(Ⅲ) adsorption on adsorbents at different temperatures

    吸附剂ΔG0/(kJ/mol)ΔH0
    /
    (kJ/mol)
    ΔS0
    /
    〔J/(K·mol)〕
    R2
    278 K298 K308 K
    NFM−41.0−44.0−45.427.70.01480.9999
    FMO−16.6−20.9−23.144.20.218 00.8714
    Bir−8.71−9.42−9.771.180.03560.9899
    Goe−12.4−13.6−14.24.550.061 00.8936
    下载: 导出CSV

    表  5  准一级动力学模型和准二级动力学模型拟合参数

    Table  5.   Fitting parameters of pseudo-first-order and pseudo-second-order kinetic models

    吸附剂准一级动力学模型准二级动力学模型
    qe1K1R2qe2K2h0R2
    NFM8.220.1240.98321.90.056327.00.998 6
    FMO5.680.1960.96623.90.15387.40.999 9
    Bir1.140.068 90.2057.070.55927.90.998 5
    Goe4.230.1870.95517.60.17554.20.999 7
    下载: 导出CSV

    表  6  吸附剂中不同价态Mn、Fe、 As的原子占比

    Table  6.   Atomic percentages of the different valence of Mn, Fe, As in absorbents % 

    吸附剂Mn(Ⅱ)Mn(Ⅲ)Mn(Ⅳ)Fe(Ⅱ)Fe(Ⅲ)As(Ⅲ)As(Ⅴ)
    NFM19.6459.5320.8336.0763.9300
    NFM-As(Ⅲ)62.8921.3915.7253.2746.7347.7852.22
    FMO11.4824.6463.8863.0336.9700
    FMO-As(Ⅲ)60.2819.4420.2862.4237.5829.3970.61
    Bir54.3820.8424.780000.00
    Bir-As(Ⅲ)62.2213.4224.360035.5064.50
    Goe00063.3836.6200
    Goe-As(Ⅲ)00049.1350.8756.5443.46
    下载: 导出CSV
  • [1] NORDSTROM D K. Worldwide occurrences of arsenic in ground water[J]. Science,2002,296:2143-2145. doi: 10.1126/science.1072375
    [2] JOMOVA K, JENISOVA Z, FESZTEROVA M, et al. Arsenic: toxicity, oxidative stress and human disease[J]. Journal of Applied Toxicology,2011,31(2):95-107.
    [3] GALAL G H, OZOLINS G. WHO guidelines for drinking-water quality[J]. Water Supply,1993,11(3):1-16.
    [4] SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry,2002,17(5):517-568. doi: 10.1016/S0883-2927(02)00018-5
    [5] MENG X, JING C, KORFIATIS G P. A review of redox transformation of arsenic in aquatic environments[J]. ACS Symposium Series,2003,835:70-83.
    [6] 张元元, 郭少娟, 王菲菲,等.TCDD和汞, 镉, 铅, 砷联合毒性效应及机理研究进展[J]. 环境工程技术学报,2021,11(2):332-342. doi: 10.12153/j.issn.1674-991X.20200217

    ZHANG Y Y, GUO S J, WANG F F, et al. Research progress on joint toxic effects and mechanisms of the mixture of TCDD and mercury, cadmium, lead, arsenic[J]. Journal of Environmental Engineering Technology,2021,11(2):332-342. doi: 10.12153/j.issn.1674-991X.20200217
    [7] LIANG M, GUO H, XIU W. Mechanisms of arsenite oxidation and arsenate adsorption by a poorly crystalline manganese oxide in the presence of low molecular weight organic acids[C]//E3S Web of Conferences. France: EDP Sciences, 2019: 04009.
    [8] LIANG M, GUO H, XIU W. Arsenite oxidation and arsenic adsorption on birnessite in the absence and the presence of citrate or EDTA[J]. Environmental Science and Pollution Research,2020,27(35):43769-43785. doi: 10.1007/s11356-020-10292-3
    [9] HOU J, TAN X, XIANG Y, et al. Insights into the underlying effect of Fe vacancy defects on the adsorption affinity of goethite for arsenic immobilization[J]. Environmental Pollution,2022,314:120268. doi: 10.1016/j.envpol.2022.120268
    [10] CUONG D V, WU P C, CHEN L I, et al. Active MnO2/biochar composite for efficient As(Ⅲ) removal: insight into the mechanisms of redox transformation and adsorption[J]. Water Research,2021,188:116495. doi: 10.1016/j.watres.2020.116495
    [11] 谷倩, 张琢, 张丽,等.砷污染场地土壤的稳定化技术工程应用研究[J]. 环境工程技术学报,2021,11(4):734-739. doi: 10.12153/j.issn.1674-991X.20200203

    GU Q, ZHANG Z, ZHANG L, et al. Research on engineering application of stabilization technology for arsenic contaminated site soil[J]. Journal of Environmental Engineering Technology,2021,11(4):734-739. doi: 10.12153/j.issn.1674-991X.20200203
    [12] SU W, XIAO L. Manganese-doped ferrihydrite/cellulose/polyvinyl alcohol composite membrane: easily recyclable adsorbent for simultaneous removal of arsenic and cadmium from soil[J]. Science of the Total Environment,2022,815:152748. doi: 10.1016/j.scitotenv.2021.152748
    [13] 石乐琪, 郭莉, 吕晨阳等.地下水脱砷技术的研究现状及发展趋势[J]. 环境工程技术学报,2022,12(5):1548-1554. doi: 10.12153/j.issn.1674-991X.20210284

    SHI L Q, GUO L, LU C Y, et al. Research status and development trend of the technology for arsenic removal from groundwater[J]. Journal of Environmental Engineering Technology,2022,12(5):1548-1554. doi: 10.12153/j.issn.1674-991X.20210284
    [14] YIN C, LI S, LIU L, et al. Structure-tunable trivalent Fe-Al-based bimetallic organic frameworks for arsenic removal from contaminated water[J]. Journal of Molecular Liquids,2022,346:117101. doi: 10.1016/j.molliq.2021.117101
    [15] ZHENG Q, HOU J, HARTLEY W, et al. As(Ⅲ) adsorption on Fe-Mn binary oxides: are Fe and Mn oxides synergistic or antagonistic for arsenic removal[J]. Chemical Engineering Journal,2020,389:124470. doi: 10.1016/j.cej.2020.124470
    [16] LIN Y, JIN X, KHAN N I, et al. Bimetallic Fe/Ni nanoparticles derived from green synthesis for the removal of arsenic(Ⅴ) in mine wastewater[J]. Journal of Environmental Management,2022,301:113838. doi: 10.1016/j.jenvman.2021.113838
    [17] BAI Y, YANG T, LIANG J, et al. The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems[J]. Water Research,2016,98:119-127. doi: 10.1016/j.watres.2016.03.068
    [18] CHEN D, LI D, XIAO Z, et al. Removal of lead ions by two Fe-Mn oxide substrate adsorbents[J]. Science of the Total Environment,2021,773:145670. doi: 10.1016/j.scitotenv.2021.145670
    [19] PARSONS J G, LOPEZ M L, PERALTA J R, et al. Determination of arsenic(Ⅲ) and arsenic(Ⅴ) binding to microwave assisted hydrothermal synthetically prepared Fe3O4, Mn3O4, and MnFe2O4 nanoadsorbents[J]. Microchemical Journal,2009,91(1):100-106. doi: 10.1016/j.microc.2008.08.012
    [20] ZHANG G S, QU J H, LIU H J, et al. Removal mechanism of As(Ⅲ) by a novel Fe-Mn binary oxide adsorbent: oxidation and sorption[J]. Environmental Science and Technology,2007,41(13):4613-4619. doi: 10.1021/es063010u
    [21] MCKENZIE R M. The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese[J]. Mineralogical Magazine,1971,38:493-502. doi: 10.1180/minmag.1971.038.296.12
    [22] ATKINSON R J, POSNER A M, QUIRK J P. Adsorption of potential-determining ions at the ferric oxide-aqueous electrolyte interface[J]. Journal of Physical Chemistry,1967,71(3):550-558. doi: 10.1021/j100862a014
    [23] WANG J, GUO X. Adsorption isotherm models: classification, physical meaning, application and solving method[J]. Chemosphere,2020,258:127279. doi: 10.1016/j.chemosphere.2020.127279
    [24] FOO K Y, HAMEED B H. Insights into the modeling of adsorption isotherm systems[J]. Chemical Engineering Journal,2010,156(1):2-10. doi: 10.1016/j.cej.2009.09.013
    [25] QI J, ZHANG G, LI H. Efficient removal of arsenic from water using a granular adsorbent: Fe-Mn binary oxide impregnated chitosan bead[J]. Bioresource Technology,2015,193:243-249. doi: 10.1016/j.biortech.2015.06.102
    [26] CAI G, TIAN Y, LI D, et al. Self-enhanced and efficient removal of As(Ⅲ) from water using Fe-Cu-Mn composite oxide under visible-light irradiation: synergistic oxidation and mechanisms[J]. Journal of Hazardous Materials,2022,422:126908. doi: 10.1016/j.jhazmat.2021.126908
    [27] LOU Z, CAO Z, XU J, et al. Enhanced removal of As(Ⅲ)/(Ⅴ) from water by simultaneously supported and stabilized Fe-Mn binary oxide nanohybrids[J]. Chemical Engineering Journal,2017,322:710-721. doi: 10.1016/j.cej.2017.04.079
    [28] ALLARD S, GUTIERREZ L, FONTAINE C, et al. Organic matter interactions with natural manganese oxide and synthetic birnessite[J]. Science of the Total Environment,2017,583:487-495. doi: 10.1016/j.scitotenv.2017.01.120
    [29] CHENG Z, FU F, DIONYSIOU D D, et al. Adsorption, oxidation, and reduction behavior of arsenic in the removal of aqueous As(Ⅲ) by mesoporous Fe/Al bimetallic particles[J]. Water Research,2016,96:22-31. doi: 10.1016/j.watres.2016.03.020
    [30] BAI Y, TANG X, SUN L, et al. Application of iron-based materials for removal of antimony and arsenic from water: sorption properties and mechanism insights[J]. Chemical Engineering Journal,2021,431:134143.
    [31] ZHENG Q, TU S, HOU J, et al. Insights into the underlying mechanisms of stability working for As(Ⅲ) removal by Fe-Mn binary oxide as a highly efficient adsorbent[J]. Water Research,2021,203:117558. doi: 10.1016/j.watres.2021.117558
    [32] YIN H, LIU F, FENG X, et al. Co2+-exchange mechanism of birnessite and its application for the removal of Pb2+ and As(Ⅲ)[J]. Journal of Hazardous Materials,2011,196:318-326. doi: 10.1016/j.jhazmat.2011.09.027
    [33] 蔡金水, 康得军, 杨天学,等.铁改性杭锦土吸附剂对水中砷的去除研究[J]. 环境科学研究,2021,34(2):346-355.

    CAI J S, KANG D J, YANG T X et al. Removal of arsenic from water by iron modified Hangjin clay adsorbent[J]. Research of Environmental Sciences,2021,34(2):346-355.
    [34] JOSHI T P, ZHANG G, JEFFERSON W A, et al. Adsorption of aromatic organoarsenic compounds by ferric and manganese binary oxide and description of the associated mechanism[J]. Chemical Engineering Journal,2017,309:577-587. doi: 10.1016/j.cej.2016.10.084
    [35] YU X, WEI Y, LIU C, et al. Ultrafast and deep removal of arsenic in high-concentration wastewater: a superior bulk adsorbent of porous Fe2O3 nanocubes-impregnated graphene aerogel[J]. Chemosphere,2019,222:258-266. doi: 10.1016/j.chemosphere.2019.01.130
    [36] ZHANG G, XU X, JI Q, et al. Porous nanobimetallic Fe-Mn cubes with high valent Mn and highly efficient removal of arsenic(Ⅲ)[J]. ACS Applied Materials and Interfaces,2017,9(17):14868-14877. doi: 10.1021/acsami.7b02127
    [37] SHUMLAS S L, SINGIREDDY S, THENUWARA A C, et al. Oxidation of arsenite to arsenate on birnessite in the presence of light[J]. Geochemical Transactions,2016,17(1):1-10. doi: 10.1186/s12932-016-0033-9
    [38] JAISWAL A, BANERJEE S, MANI R, et al. Synthesis, characterization and application of goethite mineral as an adsorbent[J]. Journal of Environmental Chemical Engineering,2013,1(3):281-289. doi: 10.1016/j.jece.2013.05.007
    [39] PARK J H, HAN Y S, AHN J S. Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream[J]. Water Research,2016,106:295-303. doi: 10.1016/j.watres.2016.10.006
    [40] XIONG Y, TONG Q, SHAN W, et al. Arsenic transformation and adsorption by iron hydroxide/manganese dioxide doped straw activated carbon[J]. Applied Surface Science,2017,416:618-627. doi: 10.1016/j.apsusc.2017.04.145
    [41] 许江城, 康得军, 赵颖,等.高效除砷分子筛新型材料制备及其吸附特性研究[J]. 环境科学研究,2020,33(9):2191-2201.

    XU J C, KANG D J, ZHAO Y, et al. Preparation and adsorption characteristics of novel molecular sieve for high sufficiency arsenic removal[J]. Research of Environmental Sciences,2020,33(9):2191-2201.
    [42] HU Q, LIU Y, GU X, et al. Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe2O4 magnetic nanoparticles[J]. Chemosphere,2017,181:328-336. doi: 10.1016/j.chemosphere.2017.04.049
    [43] XU W H, WANG L, WANG J, et al. Superparamagnetic mesoporous ferrite nanocrystal clusters for efficient removal of arsenite from water[J]. CrystEngComm,2013,15(39):7895-7903. doi: 10.1039/c3ce40944a
    [44] ZHU M, PAUL K W, KUBICKI J D, et al. Quantum chemical study of arsenic(Ⅲ, Ⅴ) adsorption on Mn-oxides: Implications for arsenic(Ⅲ) oxidation[J]. Environmental Science and Technology,2009,43(17):6655-6661. doi: 10.1021/es900537e
    [45] MCCANN C M, PEACOCK C L, HUDSON-EDWARDS K A, et al. In situ arsenic oxidation and sorption by a Fe-Mn binary oxide waste in soil[J]. Journal of Hazardous Materials,2018,342:724-731. doi: 10.1016/j.jhazmat.2017.08.066
    [46] ZHANG G, LIU F, LIU H, et al. Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: an X-ray absorption spectroscopy investigation[J]. Environmental Science and Technology,2014,48(17):10316-10322. ⊗ doi: 10.1021/es501527c
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  63
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-29
  • 录用日期:  2023-07-04
  • 修回日期:  2023-07-04
  • 网络出版日期:  2023-11-24

目录

    /

    返回文章
    返回