留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

活化过氧乙酸技术降解环境有机污染物的研究进展

王辉锋 郭艳菲 郭壮 黄意涵 徐东耀 魏健

王辉锋,郭艳菲,郭壮,等.活化过氧乙酸技术降解环境有机污染物的研究进展[J].环境工程技术学报,2023,13(6):2154-2164 doi: 10.12153/j.issn.1674-991X.20230056
引用本文: 王辉锋,郭艳菲,郭壮,等.活化过氧乙酸技术降解环境有机污染物的研究进展[J].环境工程技术学报,2023,13(6):2154-2164 doi: 10.12153/j.issn.1674-991X.20230056
WANG H F,GUO Y F,GUO Z,et al.Research progress on the degradation of environmental organic pollutants by activated peracetic acid technology[J].Journal of Environmental Engineering Technology,2023,13(6):2154-2164 doi: 10.12153/j.issn.1674-991X.20230056
Citation: WANG H F,GUO Y F,GUO Z,et al.Research progress on the degradation of environmental organic pollutants by activated peracetic acid technology[J].Journal of Environmental Engineering Technology,2023,13(6):2154-2164 doi: 10.12153/j.issn.1674-991X.20230056

活化过氧乙酸技术降解环境有机污染物的研究进展

doi: 10.12153/j.issn.1674-991X.20230056
基金项目: 中央级公益性科研院所基本科研专项(2022YSKY-65)
详细信息
    作者简介:

    王辉锋(1978—),男,高级工程师,博士,主要从事水污染治理技术研究,13311307830@126.com

    通讯作者:

    郭艳菲(1988—),女,博士研究生,研究方向为水污染控制技术,guoyanfeide@163.com

    魏健(1983—),男,副研究员,博士,主要从事流域水污染治理与管理研究,weijian0911@163.com

  • 中图分类号: X703

Research progress on the degradation of environmental organic pollutants by activated peracetic acid technology

  • 摘要:

    近年来,以抗生素、内分泌干扰物等为代表的新污染物在环境中被频繁检出,对生态系统和人类健康构成潜在风险,高效稳定的有机污染物控制技术研发是当前环境领域的研究热点。以活化过氧乙酸的高级氧化技术为研究对象,对过渡金属、碳材料及其复合材料活化过氧乙酸的效果及其降解有机污染物的机制进行系统论述,重点探讨反应过程中的自由基(有机自由基、羟基自由基)和非自由基(单线态氧、高价金属氧物种、电子转移和表面络合的复合物)降解机制,总结了活化过氧乙酸技术在废水、土壤或沉积物、地下水等环境介质中对污染物的降解效果。提出了未来研究重点,即开发高效稳定的活化过氧乙酸催化剂,加强活化过氧乙酸技术在土壤和沉积物中降解有机污染物机制的探索,深入联合其他处理技术的应用研究。

     

  • 图  1  2000—2022年Web of Science中关于PAA的发文量

    Figure  1.  Number of papers published on PAA in Web of Science in 2000-2022

    图  2  基于PAA的高级氧化技术降解有机污染物的机制

    Figure  2.  Degradation mechanisms of organic pollutants by PAA-based AOPs

    图  3  过渡金属活化PAA降解有机污染物的自由基机制

    Figure  3.  Free radical mechanism of transition-metal activated PAA for degradation of organic pollutants

    图  4  基于PAA的高级氧化技术降解有机污染物的非自由基机制

    Figure  4.  Non-free radical mechanism of organic pollutants by PAA-based AOPs

    表  1  均相过渡金属活化PAA降解有机污染物的效能

    Table  1.   Effectiveness of homogeneous transition-metal activated PAA to degrade organic pollutants

    活化PAA的
    催化剂
    降解的有机污染物反应条件降解率/%数据来源
    名称浓度/(µmol/L)
    Fe(Ⅱ)亚甲基蓝、萘普生、双酚A15催化剂浓度为100 μmol/L,PAA浓度为 100 μmol/L,
    pH为3.0,温度为22 ℃,时间为10 min
    89.4、98.2、87.7文献[13]
    Co(Ⅱ)卡马西平15催化剂浓度为10 μmol/L,PAA浓度为100 μmol/L,
    pH为7.1,温度为22 ℃,时间为30 min
    97.7文献[15]
    Fe(Ⅱ)双氯芬酸1催化剂浓度为5 mg/L,PAA浓度为100 μmol/L,
    pH为7.0,温度为25 ℃,时间为1 min
    80文献[16]
    Fe(Ⅵ)卡马西平10催化剂浓度为200 μmol/L,PAA浓度为100 μmol/L,
    pH为9.0,温度为(25±1)℃,时间为1 min
    100文献[17]
    Cu2+强化UV双氯芬酸1催化剂浓度为5 μmol/L,PAA浓度为50 μmol/L,
    pH为7.0,时间为20 min
    96文献[18]
    Cu(Ⅱ)协同热双氯芬酸5催化剂浓度为10 μmol/L,PAA浓度为0.55 mmol/L,
    pH为8,温度为60 °C,时间为13 min
    100文献[19]
    FeCl3罗丹明B501)催化剂浓度为50 mg/L,PAA浓度为50 mg/L,
    pH为3.0,时间为10 min
    99.9文献[20]
      1)单位为mg/L。
    下载: 导出CSV

    表  2  非均相过渡金属活化PAA降解有机污染物的效能

    Table  2.   Effectiveness of heterogeneous transition-metal activated PAA to degrade organic pollutants

    活化PAA的催化剂降解的有机污染物反应条件降解率/%数据
    来源
    名称浓度/(µmol/L)
    S-Fe0磺胺二甲嘧啶51)催化剂浓度为20 mg/L,PAA浓度为100 µmol/L,pH为4.0,时间为60 min86.5文献[21]
    FeSSMX10催化剂浓度为25 mg/L,PAA浓度为100 µmol/L,pH为7.0,时间为10 min93.08文献[22]
    零价铜双氯芬酸1催化剂浓度为0.5 g/L,PAA浓度为100 µmol/L,pH为3.0,
    温度为25 ℃,时间为40 min
    95.5文献[23]
    纳米CuO卡马西平4.23催化剂浓度为40 mg/L,PAA浓度为0.52 mmol/L,pH为7.0,时间为30 min87文献[24]
    CuFeS2甲硝唑101)催化剂浓度为4 g/L,PAA浓度为460 µmol/L,pH为3.0,时间为30 min83.92文献[25]
    Co3O4橙G50催化剂浓度为 0.1 g/L,PAA浓度为0.5 mmol/L,pH为7.0,时间为90 min100文献[26]
    FeCo2O4SMX10催化剂浓度为0.1 g/L,PAA浓度为100 µmol/L,pH为7.0,
    温度为25 ℃,时间为60 min
    97文献[28]
    Co1.1Mn1.9O4SMX10催化剂浓度为25 mg/L,PAA浓度为0.26 mmol/L,pH为7.0,
    温度为20 ℃,时间为7 min
    100文献[29]
    CoFe2O4罗丹明B20 1)催化剂浓度为 0.5 g/L,PAA浓度为0.8 mmol/L,pH为7.0,时间为10 min95文献[30]
    零价钴SMX5催化剂浓度为0.1 g/L,PAA浓度为50  µmol/L,pH为7.0,时间为10 min99.4文献[31]
    零价钴罗丹明B20 1)催化剂浓度为0.1 g/L,PAA浓度为0.8 mmol/L,pH为7.0,时间为3 min98.3文献[32]
    LaCoO3SMX50催化剂浓度为20 mg/L,PAA浓度为0.66 mmol/L,pH为7.0,
    温度为25 ℃,时间为60 min
    100文献[33]
      1)单位为mg/L。
    下载: 导出CSV

    表  3  碳材料活化PAA降解有机污染物的效果

    Table  3.   Effectiveness of carbon material activated PAA to degrade organic pollutants

    活化PAA的催化剂降解的有机污染物反应条件降解率/%数据来源
    名称浓度/(μmol/L)
    活性炭纤维活性艳红
    X​​-3B
    50催化剂浓度为2 g/L,PAA浓度为5 mmol/L,
    pH=7.0,温度为25 ℃,时间为45 min
    97文献[4]
    氮掺杂还原石墨烯SMX150催化剂浓度为0.5 g/L,PAA浓度为1 mmol/L,
    pH为3.0,温度为25 ℃,时间为60 min
    96文献[34]
    氮掺杂氧化石墨烯苯酚11)催化剂浓度为30 mg/L,PAA浓度为25 mg/L,
    pH为7.0,时间为60 min
    100文献[35]
    剩余污泥制备碳基材料4-氯苯酚51)催化剂浓度为25 mg/L,PAA浓度为6 mmol/L,
    pH为7.0,时间为90 min
    91.2文献[36]
    花生壳基生物炭乙酰氨基酚100催化剂浓度为0.2 g/L,PAA浓度为4 mmol/L,
    pH为5.0,时间为20 min
    92.8文献[37]
    碳化聚苯胺苯酚10催化剂浓度为25 mg/L,PAA浓度为0.1 mmol/L,
    pH为7.0,时间为60 min
    96文献[38]
    热改性活性炭SMX79催化剂浓度为50 mg/L,PAA浓度为0.26 mmol/L,
    pH为7.0,时间为90 min
    99.4文献[39]
    碳纳米管偶氮染料201)催化剂浓度为0.1 g/L,PAA浓度为0.02 g/L,
    pH为7.0,时间为180 min
    ≥90文献[40]
    氧化还原石墨烯SMX10催化剂浓度为0.1 g/L,PAA浓度为100 μmol/L,
    pH为5,温度为(25±2)℃,时间为5 min
    95文献[41]
      1)单位为mg/L。
    下载: 导出CSV

    表  4  复合材料活化PAA降解有机污染物的效果

    Table  4.   Effectiveness of composite materials activated PAA to degrade organic pollutants

    活化PAA的催化剂降解的有机污染物反应条件降解率/%数据来源
    名称浓度/(μmol/L)
    Fe负载生物质炭酸性橙色染料143催化剂浓度为0.3 g/L,PAA浓度为1.144 mol/L,
    pH为7.0,时间为25 min
    93.3文献[42]
    Fe2O3改性蒙脱石2,4-二氯苯酚1001)催化剂浓度为1 g/L,PAA浓度为0.02 mol/L,
    pH为7.0,温度为25 ℃,时间为210 min
    70文献[43]
    CoFe2S4-CN罗丹明B40催化剂浓度为20 mg/L,PAA浓度为1 mmol/L,
    pH为6.5,温度为25 ℃,时间为60 min
    99.1文献[44]
    Co@微米零价铁SMX20催化剂浓度为0.1 g/L,PAA浓度为200 µmol/L,
    pH为7.0,时间为30 min
    96文献[45]
    RuO2/MWCNTsSMX50催化剂浓度为0.2 g/L,PAA浓度为1 mmol/L,
    pH为7,时间为15 min
    100文献[46]
    金属有机骨架(ZIF)-67磺胺氯哒嗪10催化剂浓度为0.05 g/L,PAA浓度为50 µmol/L,
    pH为7.0,温度为25 ℃,时间为3 min
    100文献[47]
    CoFe2O4/CuOSMX10催化剂浓度为20 mg/L,PAA浓度为200 µmol/L,
    pH为7.0,温度为31 ℃,时间为10 min
    92文献[48]
    氮化碳负载FeCo2S4罗丹明B40PAA浓度为1 mmol/L,pH为6.5,温度为25 ℃,时间为60 min100文献[49]
    混合Fe(Ⅱ)/Fe(Ⅲ)价态
    MIL-53(Fe)
    对硝基苯酚201)催化剂浓度为20 mg/L,PAA浓度为5 mol/L,
    pH为7.0,温度为20 ℃,时间为120 min
    100文献[50]
    CoFe2O4@木质素
    衍生生物质炭
    SMX101)催化剂浓度为0.1 g/L,PAA浓度为550 µmol/L,
    pH 为7.0,温度为25 ℃,时间为60 min
    95.8文献[51]
      1)单位为mg/L。
    下载: 导出CSV

    表  5  活化过氧乙酸技术在降解废水有机污染物的应用

    Table  5.   Application of activated PAA technology to degrade organic pollutants in wastewater

    降解的有机污染物PAA浓度/
    (mmol/L)
    活化剂pH活性物种去除率/%数据
    来源
    类型名称浓度/(µmol/L)种类剂量
    酚类
    有机物
    苯酚100.4Co(Ⅱ)0.01 mmol/L7.0CH3C(O)OO·74.1(10 min)文献[58]
    对硝基苯酚201)5 000混合Fe(Ⅱ)/Fe(Ⅲ)
    价态MIL-53(Fe)
    20 mg/L7·OH100(120 min)文献[50]
    苯酚100.1碳化聚苯胺25 mg/L71O296(60 min)文献[38]
    染料亚甲蓝31.263.6电化学(EC)铂片和石墨板电极,电解液Na2NO3浓度为0.45 g/L;电流密度为10 mA/cm23·OH、CH3C(O)O·和 CH3C(O)OO·93.99(120 min)文献[59]
    橙G500.5Co3O4100 mg/L7CH3C(O)O·和 CH3C(O)OO·100(90 min)文献[26]
    偶氮染料201)201)碳纳米管100 mg/L7未提及>90(180 min)文献[40]
    药物卡马西平4.230.52纳米CuO40 mg/L7.0CH3C(O)OO·87(30 min)文献[24]
    土霉素≤10.860.066UV波长为254 nm, 照射剂量为0~223.2 mJ/cm27.1·OH100(45 min)文献[60]
    诺氟沙星6.260.131中压紫外线
    (MPUV)
    波长为200~300 nm,照射剂量为0~500 mJ/cm29·OH、·O2-1O296.60(50 min)文献[61]
    三氯生11UV-Fe2+Fe2+浓度为0.56 mg/L,
    波长为254 nm,
    光强度为0.24 mW/cm2
    3.5·OH、CH3C(O)O·和CH3C(O)OO·100(20 min)文献[62]
    磺胺二甲嘧啶35.930.1UV/Fe0Fe0浓度为0.1 g/L,
    波长为254 nm,
    紫外灯功率为6 W
    4·OH、CH3C(O)O·和CH3C(O)OO·85(60 min)文献[63]
    SMX50.260 ℃7CH3C(O)O·和CH3C(O)OO·86(25 min)文献[9]
    SMX5400Fe2+-沸石800 mg/L7·OH100(50 min)文献[11]
    SMX500.66LaCoO320 mg/L7CH3C(O)O·和 CH3C(O)OO·100(60 min)文献[33]
    SMX100.55CoFe2O4@生物质炭100 mg/L7.0±0.2CH3C(O)O·和CH3C(O)OO·95.8(60 min)文献[51]
      注:本表所列均为降解反应的最佳条件。1)单位为mg/L。
    下载: 导出CSV

    表  6  活化过氧乙酸技术在降解土壤和沉积物中有机污染物的应用

    Table  6.   Application of activated PAA technology to degrade organic pollutants in soil and sediment

    降解的有机污染物氧化剂土壤/沉积物基本情况pH影响去除
    效果的因素
    去除效果
    类型名称浓度
    湖泊沉
    积物[64]
    α-甲基萘 10~25 mmol/kg 去离子水、乙酸、H2O2溶液体积比为1:1:1的混合物 总有机碳含量为2.1%~
    12.8%,表面积为3.2~
    22.0 m2/g
    7.49~7.67 沉积物的表面积和有机碳含量 24 h,沙质沉积物和粉质黏土沉积物中α-甲基萘的去除率分别为70%和100%
    湖泊沉
    积物[65]
    苯并[a]芘 10~25 mmol/kg H2O2、乙酸、去离子水体积比为1:1:1的混合物 沉积物Ⅰ,大部分颗粒粒径<75 μm,有机碳含量为12.6%,表面积为14.0 m2/g;沉积物Ⅱ,沙质类型,大部分颗粒粒径为75~850 μm,有机碳含量为0.5%,表面积为1.2 m2/g 约7 沉积物的粒径、表面积和有机碳含量 24 h,苯并[a]芘的去除率均为100%,其中,沉积物Ⅰ中的反应速率为沉积物Ⅱ的1.5倍
    超级基金污染场地(Superfund)[66] 多环芳烃(PAHs) 密歇根湖西南海岸的污染土壤(Bedford LT)和Bedford LT10号场地的PAH浓度分别为500~
    1 000、2 000~
    3 000 mg/kg
    H2O2、乙酸、去离子水体积比为3:5:7或3:3:9的混合物 Bedford LT 10和Bedford LT土壤的含水量分别为25%和18.5%,TOC浓度分别为11%和18.5%,pH分别为7.09和7.04 约7 沉积物的表面积和有机碳含量 24 h,Bedford LT
    的14种PAHs几乎完全降解;
    Bedford LT10号未观察到14种PAHs的降解
    沙质和粉质黏土沉
    积物[67]
    α-甲基萘和
    苯并[a]芘
    α-甲基萘或苯并[a]芘浓度为500 mg/kg H2O2、乙酸、去离子水体积比为2:5:8的混合物 沙质沉积物,颗粒粒径>150 μm;粉质黏土,颗粒粒径为75~150 μm,总有机碳浓度分别为0.5%和1.4% 约7 沉积物粒径和有机碳含量 24 h,α-甲基萘的去除率为90%;苯并[a]芘的去除率为90%
    下载: 导出CSV
  • [1] 敖蒙蒙, 魏健, 陈忠林, 等.四环素类抗生素环境行为及其生态毒性研究进展[J]. 环境工程技术学报,2021,11(2):314-324. doi: 10.12153/j.issn.1674-991X.20200096

    AO M M, WEI J, CHEN Z L, et al. Research progress on environmental behaviors and ecotoxicity of tetracycline antibiotics[J]. Journal of Environmental Engineering Technology,2021,11(2):314-324. doi: 10.12153/j.issn.1674-991X.20200096
    [2] ZHANG K J, ZHOU X Y, DU P H, et al. Oxidation of β-lactam antibiotics by peracetic acid: reaction kinetics, product and pathway evaluation[J]. Water Research,2017,123:153-161. doi: 10.1016/j.watres.2017.06.057
    [3] 王静晓, 朱柯安, 陈飞.氯离子活化过氧乙酸对罗丹明B的降解性能及机理研究[J]. 环境科学研究,2021,34(12):2850-2858. doi: 10.13198/j.issn.1001-6929.2021.09.19

    WANG J X, ZHU K A, CHEN F. Degradation performance and mechanism of rhodamine B by chloride activated peracetic acid[J]. Research of Environmental Sciences,2021,34(12):2850-2858. doi: 10.13198/j.issn.1001-6929.2021.09.19
    [4] ZHOU F Y, LU C, YAO Y Y, et al. Activated carbon fibers as an effective metal-free catalyst for peracetic acid activation: implications for the removal of organic pollutants[J]. Chemical Engineering Journal,2015,281:953-960. doi: 10.1016/j.cej.2015.07.034
    [5] HOLLMAN J, DOMINIC J A, ACHARI G. Degradation of pharmaceutical mixtures in aqueous solutions using UV/peracetic acid process: Kinetics, degradation pathways and comparison with UV/H2O2[J]. Chemosphere,2020,248:125911. doi: 10.1016/j.chemosphere.2020.125911
    [6] RIZZO L, LOFRANO G, GAGO C, et al. Antibiotic contaminated water treated by photo driven advanced oxidation processes: ultraviolet/H2O2 vs ultraviolet/peracetic acid[J]. Journal of Cleaner Production,2018,205:67-75. doi: 10.1016/j.jclepro.2018.09.101
    [7] RIZZO L, AGOVINO T, NAHIM-GRANADOS S, et al. Tertiary treatment of urban wastewater by solar and UV-C driven advanced oxidation with peracetic acid: effect on contaminants of emerging concern and antibiotic resistance[J]. Water Research,2019,149:272-281. doi: 10.1016/j.watres.2018.11.031
    [8] KUNIGK L, GOMES D R, FORTE F, et al. The influence of temperature on the decomposition kinetics of peracetic acid in solutions[J]. Brazilian Journal of Chemical Engineering,2001,18(2):217-220. doi: 10.1590/S0104-66322001000200009
    [9] WANG J W, WAN Y, DING J Q, et al. Thermal activation of peracetic acid in aquatic solution: the mechanism and application to degrade sulfamethoxazole[J]. Environmental Science & Technology,2020,54(22):14635-14645.
    [10] DENG J W, LIU S L, FU Y S, et al. Heat-activated peracetic acid for degradation of diclofenac: kinetics, influencing factors and mechanism[J]. Environmental Technology,2023,44(19):2946-2954. doi: 10.1080/09593330.2022.2048086
    [11] WANG S X, WANG H B, LIU Y Q, et al. Effective degradation of sulfamethoxazole with Fe2+-zeolite/peracetic acid[J]. Separation and Purification Technology,2020,233:115973. doi: 10.1016/j.seppur.2019.115973
    [12] LUUKKONEN T, PEHKONEN S O. Peracids in water treatment: a critical review[J]. Critical Reviews in Environmental Science and Technology,2017,47(1):1-39. doi: 10.1080/10643389.2016.1272343
    [13] KIM J, ZHANG T Q, LIU W, et al. Advanced oxidation process with peracetic acid and Fe(Ⅱ) for contaminant degradation[J]. Environmental Science & Technology,2019,53(22):13312-13322.
    [14] 田丹, 吴玮, 沈芷璇, 等.Co(Ⅱ)活化过氧乙酸降解有机染料研究[J]. 环境科学学报,2018,38(10):4023-4031. doi: 10.13671/j.hjkxxb.2018.0170

    TIAN D, WU W, SHEN Z X, et al. Degradation of organic dyes with peracetic acid activated by Co(Ⅱ)[J]. Acta Scientiae Circumstantiae,2018,38(10):4023-4031. doi: 10.13671/j.hjkxxb.2018.0170
    [15] KIM J, DU P H, LIU W, et al. Cobalt/peracetic acid: advanced oxidation of aromatic organic compounds by acetylperoxyl radicals[J]. Environmental Science & Technology,2020,54(8):5268-5278.
    [16] WANG Z R, SHI H L, WANG S X, et al. Degradation of diclofenac by Fe(Ⅱ)-activated peracetic acid[J]. Environmental Technology,2021,42(27):4333-4341. doi: 10.1080/09593330.2020.1756926
    [17] MANOLI K, LI R B, KIM J, et al. Ferrate(Ⅵ)-peracetic acid oxidation process: rapid degradation of pharmaceuticals in water[J]. Chemical Engineering Journal,2022,429:132384. doi: 10.1016/j.cej.2021.132384
    [18] 张李. 基于过氧乙酸和过一硫酸盐的高级氧化技术去除水中双氯芬酸的研究[D]. 成都: 西南交通大学, 2021.
    [19] 邓杰文, 张琳悦, 付永胜, 等. Cu(Ⅱ)协同热活化过氧乙酸降解水中双氯芬酸[J/OL]. 环境化学: 1-8[2023-03-16]. https://kns.cnki.net/kcms/detail/11.1844.X.20221103.1031.002.html.
    [20] RAHMANI A R, GILAN R A, ASGARI G, et al. Enhanced degradation of Rhodamine B dye by Fenton/peracetic acid and photo-Fenton/peracetic acid processes[J]. International Journal of Chemical Reactor Engineering,2022,20(12):1251-1260. doi: 10.1515/ijcre-2022-0008
    [21] PAN Y W, BU Z Y, LI J, et al. Sulfamethazine removal by peracetic acid activation with sulfide-modified zero-valent iron: efficiency, the role of sulfur species, and mechanisms[J]. Separation and Purification Technology,2021,277:119402. doi: 10.1016/j.seppur.2021.119402
    [22] YANG S R, HE C S, XIE Z H, et al. Efficient activation of PAA by FeS for fast removal of pharmaceuticals: the dual role of sulfur species in regulating the reactive oxidized species[J]. Water Research,2022,217:118402. doi: 10.1016/j.watres.2022.118402
    [23] ZHANG L, FU Y S, WANG Z R, et al. Removal of diclofenac in water using peracetic acid activated by zero valent copper[J]. Separation and Purification Technology,2021,276:119319. doi: 10.1016/j.seppur.2021.119319
    [24] ZHANG L L, CHEN J B, ZHANG Y L, et al. Highly efficient activation of peracetic acid by nano-CuO for carbamazepine degradation in wastewater: the significant role of H2O2 and evidence of acetylperoxy radical contribution[J]. Water Research,2022,216:118322. doi: 10.1016/j.watres.2022.118322
    [25] YANG K, ZHAI Z H, LIU H L, et al. Peracetic acid activation by natural chalcopyrite for metronidazole degradation: unveiling the effects of Cu-Fe bimetallic sites and sulfur species[J]. Separation and Purification Technology,2023,305:122500. doi: 10.1016/j.seppur.2022.122500
    [26] WU W, TIAN D, LIU T C, et al. Degradation of organic compounds by peracetic acid activated with Co3O4: a novel advanced oxidation process and organic radical contribution[J]. Chemical Engineering Journal,2020,394:124938. doi: 10.1016/j.cej.2020.124938
    [27] HU P D, LONG M C. Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications[J]. Applied Catalysis B:Environmental,2016,181:103-117. doi: 10.1016/j.apcatb.2015.07.024
    [28] MENG L, DONG J Y, CHEN J, et al. Activation of peracetic acid by spinel FeCo2O4 nanoparticles for the degradation of sulfamethoxazole[J]. Chemical Engineering Journal,2023,456:141084. doi: 10.1016/j.cej.2022.141084
    [29] ZHANG L L, CHEN J B, ZHENG T L, et al. Co-Mn spinel oxides trigger peracetic acid activation for ultrafast degradation of sulfonamide antibiotics: Unveiling critical role of Mn species in boosting Co activity[J]. Water Research,2023,229:119462. doi: 10.1016/j.watres.2022.119462
    [30] ZHOU G F, FU Y S, ZHOU R Y, et al. Efficient degradation of organic contaminants by magnetic cobalt ferrite combined with peracetic acid[J]. Process Safety and Environmental Protection,2022,160:376-384. doi: 10.1016/j.psep.2022.02.031
    [31] ZHOU G F, ZHOU R Y, LIU Y Q, et al. Efficient degradation of sulfamethoxazole using peracetic acid activated by zero-valent cobalt[J]. Journal of Environmental Chemical Engineering,2022,10(3):107783. doi: 10.1016/j.jece.2022.107783
    [32] 周高峰, 周润宇, 刘义青, 等.零价钴活化过氧乙酸降解水中罗丹明B的研究[J]. 环境科学学报,2022,42(11):47-55.

    ZHOU G F, ZHOU R Y, LIU Y Q, et al. Degrdation of rhodamine B by peracetic acid activated with zero-valent cobalt[J]. Acta Scientiae Circumstantiae,2022,42(11):47-55.
    [33] ZHOU X F, WU H W, ZHANG L L, et al. Activation of peracetic acid with lanthanum cobaltite perovskite for sulfamethoxazole degradation under a neutral pH: the contribution of organic radicals[J]. Molecules,2020,25(12):2725. doi: 10.3390/molecules25122725
    [34] 卢建. 基于过氧化物的高级氧化体系降解水体中抗生素的研究[D]. 苏州: 苏州科技大学, 2019.
    [35] 刘永泽, 田幸, 张立秋, 等. 一种采用氮掺杂碳材料活化过氧乙酸降解水中有机污染物的方法: CN111606405A[P]. 2020-09-01.
    [36] 马军, 程平统, 吴丽颖, 孙志强, 甄宇菲, 李璐玮, 佘月城. 一种以剩余污泥制备碳基催化剂的制备方法及应用: CN113209970A[P]. 2023-05-05.
    [37] 张晖, 樊晓辉, 吴飞, 苗菲, 赵津津. 一种利用不同炭材料活化过氧乙酸经电子转移机制去除水中污染物的方法及其应用: CN113860472A[P]. 2022-11-01.
    [38] TIAN X, LIU S Q, ZHANG B N, et al. Carbonized polyaniline-activated peracetic acid advanced oxidation process for organic removal: efficiency and mechanisms[J]. Environmental Research,2023,219:115035. doi: 10.1016/j.envres.2022.115035
    [39] DAI C M, LI S, DUAN Y P, et al. Mechanisms and product toxicity of activated carbon/peracetic acid for degradation of sulfamethoxazole: implications for groundwater remediation[J]. Water Research,2022,216:118347. doi: 10.1016/j.watres.2022.118347
    [40] 陈家斌, 黄天寅, 沈芷璇, 等. 一种碳纳米管活化过氧乙酸降解废水中污染物的方法: CN108423793A[P]. 2018-08-21.
    [41] KONG D Z, ZHAO Y M, FAN X R, et al. Reduced graphene oxide triggers peracetic acid activation for robust removal of micropollutants: the role of electron transfer[J]. Environmental Science & Technology,2022,56(16):11707-11717.
    [42] SHI C J, WANG Y, ZHANG K, et al. Fe-biochar as a safe and efficient catalyst to activate peracetic acid for the removal of the acid orange dye from water[J]. Chemosphere,2022,307:135686. doi: 10.1016/j.chemosphere.2022.135686
    [43] VIRKUTYTE J, VARMA R S. Eco-friendly magnetic iron oxide-pillared montmorillonite for advanced catalytic degradation of dichlorophenol[J]. ACS Sustainable Chemistry & Engineering,2014,2(7):1545-1550.
    [44] ZHOU R Y, FU Y S, ZHOU G F, et al. Heterogeneous degradation of organic contaminants by peracetic acid activated with FeCo2S4 modified g-C3N4: identification of reactive species and catalytic mechanism[J]. Separation and Purification Technology,2022,282:120082. doi: 10.1016/j.seppur.2021.120082
    [45] YANG L W, SHE L H, XIE Z H, et al. Boosting activation of peracetic acid by Co@mZVI for efficient degradation of sulfamethoxazole: interesting two-phase generation of reactive oxidized species[J]. Chemical Engineering Journal,2022,448:137667. doi: 10.1016/j.cej.2022.137667
    [46] QIAN Y J, HUANG J J, CHEN J B, et al. Activation of peracetic acid by RuO2/MWCNTs to degrade sulfamethoxazole at neutral condition[J]. Chemical Engineering Journal,2022,431:134217. doi: 10.1016/j.cej.2021.134217
    [47] DUAN J, CHEN L, JI H D, et al. Activation of peracetic acid by metal-organic frameworks (ZIF-67) for efficient degradation of sulfachloropyridazine[J]. Chinese Chemical Letters,2022,33(6):3172-3176. doi: 10.1016/j.cclet.2021.11.072
    [48] 刘振中, 万思文, 吴阳, 等. CoFe2O4/CuO活化过氧乙酸高效降解磺胺甲恶唑[J/OL]. 物理化学学报: 1-10[2023-03-16]. https://kns.cnki.net/kcms/detail/11.1892.O6.20221226.1320.001.html.
    [49] 周润宇, 付永胜, 周高峰, 等.石墨相氮化碳负载尖晶石型铁钴硫化物活化过氧乙酸降解自然水体中罗丹明B的研究[J]. 水处理技术,2022,48(12):77-82. doi: 10.16796/j.cnki.1000-3770.2022.12.015

    ZHOU R Y, FU Y S, ZHOU G F, et al. Degradation of rhodamine B in natural waters by peracetic acid activated with FeCo2S4 modified g-C3N4[J]. Technology of Water Treatment,2022,48(12):77-82. doi: 10.16796/j.cnki.1000-3770.2022.12.015
    [50] 胡倩, 杨涛语, 朱斐超, 等.混合价态铁基金属有机框架催化过氧乙酸高效降解对硝基苯酚[J]. 纺织学报,2022,43(11):133-140.

    HU Q, YANG T Y, ZHU F C, et al. Peracetic acid activation for efficient degradation of p-nitrophenol by mixed-valence iron-based metal-organic framework[J]. Journal of Textile Research,2022,43(11):133-140.
    [51] DONG J, XU W H, LIU S B, et al. Lignin-derived biochar to support CoFe2O4: effective activation of peracetic acid for sulfamethoxazole degradation[J]. Chemical Engineering Journal,2022,430:132868. doi: 10.1016/j.cej.2021.132868
    [52] CHEN J C, PAVLOSTATHIS S G. Peracetic acid fate and decomposition in poultry processing wastewater streams[J]. Bioresource Technology Reports,2019,7:100285. doi: 10.1016/j.biteb.2019.100285
    [53] AO X W, ELORANTA J, HUANG C H, et al. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: a review[J]. Water Research,2021,188:116479. doi: 10.1016/j.watres.2020.116479
    [54] ZHANG T Q, HUANG C H. Modeling the kinetics of UV/peracetic acid advanced oxidation process[J]. Environmental Science & Technology,2020,54(12):7579-7590.
    [55] CARETTI C, LUBELLO C. Wastewater disinfection with PAA and UV combined treatment: a pilot plant study[J]. Water Research,2003,37(10):2365-2371. doi: 10.1016/S0043-1354(03)00025-3
    [56] DAI Y H, QI C D, CAO H, et al. Enhanced degradation of sulfamethoxazole by microwave-activated peracetic acid under alkaline condition: influencing factors and mechanism[J]. Separation and Purification Technology,2022,288:120716. doi: 10.1016/j.seppur.2022.120716
    [57] LIU B H, GUO W Q, JIA W R, et al. Novel nonradical oxidation of sulfonamide antibiotics with co(Ⅱ)-doped g-C3N4-activated peracetic acid: role of high-valent cobalt–oxo species[J]. Environmental Science & Technology,2021,55(18):12640-12651.
    [58] DU P H, WANG J J, SUN G D, et al. Hydrogen atom abstraction mechanism for organic compound oxidation by acetylperoxyl radical in Co(Ⅱ)/peracetic acid activation system[J]. Water Research,2022,212:118113. doi: 10.1016/j.watres.2022.118113
    [59] YUAN D L, YANG K, PAN S Y, et al. Peracetic acid enhanced electrochemical advanced oxidation for organic pollutant elimination[J]. Separation and Purification Technology,2021,276:119317. doi: 10.1016/j.seppur.2021.119317
    [60] YAN T T, PING Q, ZHANG A, et al. Enhanced removal of oxytetracycline by UV-driven advanced oxidation with peracetic acid: insight into the degradation intermediates and N-nitrosodimethylamine formation potential[J]. Chemosphere,2021,274:129726. doi: 10.1016/j.chemosphere.2021.129726
    [61] AO X W, WANG W B, SUN W J, et al. Degradation and transformation of norfloxacin in medium-pressure ultraviolet/peracetic acid process: an investigation of the role of pH[J]. Water Research,2021,203:117458. doi: 10.1016/j.watres.2021.117458
    [62] WANG S X, CHEN Z, WANG Z R, et al. Enhanced degradation of triclosan using UV-Fe2+synergistic activation of peracetic acid[J]. Environmental Science:Water Research & Technology,2021,7(3):630-637.
    [63] WANG L Q, YE J Y, ZHANG J Y, et al. Removal of sulfamethazine using peracetic acid activated by Fe0 and UV: efficiency and mechanism study[J]. Journal of Environmental Chemical Engineering,2021,9(6):106358. doi: 10.1016/j.jece.2021.106358
    [64] LEVITT J S, N’GUESSAN A L, RAPP K L, et al. Remediation of α-methylnaphthalene-contaminated sediments using peroxy acid[J]. Water Research,2003,37(12):3016-3022. doi: 10.1016/S0043-1354(03)00116-7
    [65] N'GUESSAN A L, LEVITT J S, NYMAN M C. Remediation of benzo(a)pyrene in contaminated sediments using peroxy-acid[J]. Chemosphere,2004,55(10):1413-1420. doi: 10.1016/j.chemosphere.2003.11.026
    [66] SCOTT ALDERMAN N, N’GUESSAN A L, NYMAN M C. Effective treatment of PAH contaminated Superfund site soil with the peroxy-acid process[J]. Journal of Hazardous Materials,2007,146(3):652-660. doi: 10.1016/j.jhazmat.2007.04.068
    [67] N'GUESSAN A L, CARIGNAN T, NYMAN M C. Optimization of the peroxy acid treatment of α-methylnaphthalene and benzo[a]pyrene in sandy and silty-clay sediments[J]. Environmental Science & Technology,2004,38(5):1554-1560.
    [68] LIN J B, HU Y Y, XIAO J Y, et al. Enhanced diclofenac elimination in Fe(Ⅱ)/peracetic acid process by promoting Fe(Ⅲ)/Fe(Ⅱ) cycle with ABTS as electron shuttle[J]. Chemical Engineering Journal,2021,420:129692. ⊗ doi: 10.1016/j.cej.2021.129692
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  355
  • HTML全文浏览量:  86
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-27
  • 网络出版日期:  2023-11-24

目录

    /

    返回文章
    返回