留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

衡水湖水动力水质特征及驱动机制

范振宇 刘振杰 白静 谢培 孙宁 乔飞 张冰烨 黄法铭

范振宇,刘振杰,白静,等.衡水湖水动力水质特征及驱动机制[J].环境工程技术学报,2023,13(3):1001-1010 doi: 10.12153/j.issn.1674-991X.20221145
引用本文: 范振宇,刘振杰,白静,等.衡水湖水动力水质特征及驱动机制[J].环境工程技术学报,2023,13(3):1001-1010 doi: 10.12153/j.issn.1674-991X.20221145
FAN Z Y,LIU Z J,BAI J,et al.Hydrodynamic water quality characteristics and driving mechanism in Hengshui Lake[J].Journal of Environmental Engineering Technology,2023,13(3):1001-1010 doi: 10.12153/j.issn.1674-991X.20221145
Citation: FAN Z Y,LIU Z J,BAI J,et al.Hydrodynamic water quality characteristics and driving mechanism in Hengshui Lake[J].Journal of Environmental Engineering Technology,2023,13(3):1001-1010 doi: 10.12153/j.issn.1674-991X.20221145

衡水湖水动力水质特征及驱动机制

doi: 10.12153/j.issn.1674-991X.20221145
基金项目: 生态环境部部门预算项目(211110214430021);衡水湖国家自然保护区咨询项目(YTZ022003S18016)
详细信息
    作者简介:

    范振宇(1998—),男,硕士研究生,主要研究方向为湖泊生态修复,1548082538@163.com

    通讯作者:

    乔飞(1977—),男,正高级工程师, 博士,主要研究方向为环境规划与管理,qiaofei@craes.org.cn

  • 中图分类号: X524

Hydrodynamic water quality characteristics and driving mechanism in Hengshui Lake

  • 摘要:

    为探究衡水湖水动力水质特征,在现场调查的基础上,基于EFDC(Environmental Fluid Dynamics Code)模型,构建衡水湖二维水动力水质模型,分别用2018年和2019年的水位、温度和水质等观测数据对模型进行率定和验证,该模型可较好地反映衡水湖的水动力和水质情况。在此基础上,模拟衡水湖水动力学和水质在空间和时间的变化特征,分析衡水湖水动力水质演化的驱动机制。结果显示:衡水湖水动力较弱,补水是改善水动力的重要方式,对于保持湖泊生态水位,提升水交换能力有促进作用;补水带入的大量营养盐对湖区水质有显著影响,各站点的水质指标在补水期产生较大波动,其中王口闸和小湖心受影响较大。在进水水质较差的情况下,补水容易使湖泊水体污染加重,控制入湖水质仍然不能忽视。

     

  • 图  1  衡水湖监测站点分布

    Figure  1.  Distribution of observation stations in Hengshui Lake

    图  2  水下测量点位

    Figure  2.  Distribution of underwater measuring points

    图  3  2018年衡水湖大湖心站点模拟值与观测值对比

    Figure  3.  Comparison of simulation and observation results at Dahuxin station in 2018 in Hengshui Lake

    图  4  2019年衡水湖大湖心站点模拟值与观测值对比

    Figure  4.  Comparison of simulation and observation results at Dahuxin station in 2019 in Hengshui Lake

    图  5  衡水湖不同时期的水深变化过程

    Figure  5.  Water depth change process of Hengshui Lake in different periods

    图  6  衡水湖流速分布

    Figure  6.  Velocity distribution of Hengshui Lake

    图  7  衡水湖水龄分布及变化情况

    Figure  7.  Water age changes and distribution of water age in Hengshui Lake

    图  8  典型站点TN、TP、COD的第一次补水阶段全湖浓度分布及2018—2019年变化特征

    Figure  8.  Concentration distribution of TN, TP and COD in the whole lake in the first diversion stage of typical stations and their change characteristics from 2018 to 2019

    表  1  初始水质条件

    Table  1.   Initial water quality conditions

    水质组分初始浓度/(mg/L)
    难溶颗粒态有机磷(ROP)0.003
    活性颗粒态有机磷(LOP)0.009
    溶解态有机磷(DOP)0.013
    总磷(TP)0.025
    难溶颗粒态有机氮(RON)0.146
    活性颗粒态有机氮(LON)0.170
    溶解态有机氮(DON)0.170
    氨氮(NH4 +0.270
    硝态氮(NO3 /NO2 0.485
    化学需氧量(COD)19.000
    溶解氧(DO)10.000
    下载: 导出CSV

    表  2  主要水质模拟参数

    Table  2.   Key water quality simulation parameters

    参数取值
    难溶颗粒态有机磷最小水解速率/d−10.005
    活性颗粒态有机磷最小水解速率/d−10.075
    溶解态有机磷最小矿化速率/d−10.1
    最大硝化率/d−10.07
    硝化氧半饱和常数/(g/m3,以O2计)1
    硝化氮半饱和常数/(g/m3,以N计)1
    硝化作用的参考温度/℃27
    硝化作用的次优温度系数0.004 5
    硝化作用的超优温度系数0.004 5
    难溶颗粒态有机氮最小水解速率/d−10.005
    活性颗粒态有机氮最小水解速率/d−10.075
    溶解态有机氮最小矿化速率/d−10.015
    下载: 导出CSV

    表  3  率定结果误差分析

    Table  3.   Error analysis of calibration results

    指标平均绝对误差平均相对误差/%最大绝对误差相关系数
    DO浓度1.17511.43.7660.873
    温度2.90238.86.6150.955
    TN浓度0.1278.80.2350.924
    水位0.0310.20.1120.993
    下载: 导出CSV

    表  4  验证结果误差分析

    Table  4.   Error analysis of validation results

    指标平均绝对误差平均相对误差/%最大绝对误差相关系数
    DO浓度0.8309.22.3570.901
    温度2.64119.68.3440.919
    TN浓度0.28520.60.9380.857
    水位0.0740.40.3850.976
    下载: 导出CSV

    表  5  各站点的水质指标平均值

    Table  5.   Average value of water quality indicators at each station mg/L 

    站点TN浓度TP浓度COD
    王口闸1.8450.07019.774
    小湖心2.2870.07116.352
    大湖心1.7060.05718.399
    大赵闸1.3890.04415.898
    下载: 导出CSV

    表  6  王口闸站点在不同进水情况下的水质指标变化

    Table  6.   Water quality index changes of Wangkou Gate station under different inflow conditions mg/L 

    水质指标水体2018年
    春季补水
    2018年
    秋季补水
    2019年
    春季补水
    2019年
    秋季补水
    TN浓度入湖水体1.3042.5270.4771.144
    补水前水体1.6281.1652.3662.038
    补水后水体1.6053.7191.3173.536
    TP浓度入湖水体0.0860.0820.0260.045
    补水前水体0.0420.0680.0750.067
    补水后水体0.1080.1740.0690.111
    COD入湖水体16.79116.5107.49410.615
    补水前水体19.6439.00617.29819.851
    补水后水体20.52120.99523.57820.097
      注:入湖水体的水质指标为平均值,补水前水体、补水后水体的水质指标为瞬时值。
    下载: 导出CSV
  • [1] KADLEC R H. Constructed marshes for nitrate removal[J]. Critical Reviews in Environmental Science and Technology,2012,42(9):934-1005. doi: 10.1080/10643389.2010.534711
    [2] MOOMAW W R, CHMURA G L, DAVIES G T, et al. Wetlands in a changing climate: science, policy and management[J]. Wetlands,2018,38(2):183-205. doi: 10.1007/s13157-018-1023-8
    [3] LIU W W, GUO Z L, WANG H N, et al. Spatial-temporal variations for pollution assessment of heavy metals in Hengshui Lake of China[J]. Water,2022,14(3):458. doi: 10.3390/w14030458
    [4] 张嘉雯, 魏健, 吕一凡, 等.衡水湖沉积物中典型持久性有机污染物污染特征与风险评估[J]. 环境科学,2020,41(3):1357-1367.

    ZHANG J W, WEI J, LÜ Y F, et al. Occurrence and ecological risk assessment of typical persistent organic pollutants in Hengshui Lake[J]. Environmental Science,2020,41(3):1357-1367.
    [5] HUANG J, YANG H, HE W, et al. Ecological service value tradeoffs: an ecological water replenishment model for the Jilin Momoge National Nature Reserve, China[J]. International Journal of Environmental Research and Public Health,2022,19(6):3263. doi: 10.3390/ijerph19063263
    [6] YAN Z Q, ZHOU Z H, SANG X F, et al. Water replenishment for ecological flow with E-WAS framework: a case study of the Longgang River Basin, Shenzhen, China[J]. Proceedings of the International Association of Hydrological Sciences,2020,383:327-339. doi: 10.5194/piahs-383-327-2020
    [7] 刘魏魏, 郭子良, 王大安, 等.衡水湖湿地水环境质量时空变化特征及污染源分析[J]. 环境科学,2021,42(3):1361-1371.

    LIU W W, GUO Z L, WANG D A, et al. Spatial-temporal variation of water environment quality and pollution source analysis in Hengshui Lake[J]. Environmental Science,2021,42(3):1361-1371.
    [8] ZHANG Z Q, WEI S Z, LIU J X. Pollution characteristics and risk assessment of heavy metal elements in sediment in the west lake of Hengshui Lake[J]. Advances in Materials Science and Engineering,2021,2021:1-6.
    [9] WEI Y Y, ZHANG M Y, CUI L J, et al. Winter decomposition of emergent macrophytes affects water quality under ice in a temperate shallow lake[J]. Water,2020,12(9):2640. doi: 10.3390/w12092640
    [10] 张嘉雯, 魏健, 刘利, 等.衡水湖沉积物营养盐形态分布特征及污染评价[J]. 环境科学,2020,41(12):5389-5399. doi: 10.13227/j.hjkx.202004237

    ZHANG J W, WEI J, LIU L, et al. Distribution characteristics and pollution assessment of nutrients in Hengshui Lake sediments[J]. Environmental Science,2020,41(12):5389-5399. doi: 10.13227/j.hjkx.202004237
    [11] 温晓君, 陈辉, 白军红.基于模糊矩阵的衡水湖水环境质量评价及分析[J]. 水土保持研究,2016,23(2):292-296.

    WEN X J, CHEN H, BAI J H. Evaluation and analysis on water environmental quality of Hengshui Lake based on fuzzy comprehensive evaluation method[J]. Research of Soil and Water Conservation,2016,23(2):292-296.
    [12] 吴时强, 戴江玉, 石莎.引水工程湖泊水生态效应评估研究进展[J]. 南昌工程学院学报,2018,37(6):14-26.

    WU S Q, DAI J Y, SHI S. Progress in assessment of hydro-ecological effects in lakes induced by water diversion[J]. Journal of Nanchang Institute of Technology,2018,37(6):14-26.
    [13] 张以飞, 王玉琳, 汪靓.EFDC模型概述与应用分析[J]. 环境影响评价,2015,37(3):70-72.

    ZHANG Y F, WANG Y L, WANG L. EFDC overview and application analysis[J]. Environmental Impact Assessment,2015,37(3):70-72.
    [14] VILLOTA-LÓPEZ C, RODRÍGUEZ-CUEVAS C, TORRES-BEJARANO F, et al. Applying EFDC Explorer model in the Gallinas River, Mexico to estimate its assimilation capacity for water quality protection[J]. Scientific Reports,2021,11(1):1-16. doi: 10.1038/s41598-020-79139-8
    [15] ZHENG L, WANG H P, LIU C, et al. Prediction of harmful algal blooms in large water bodies using the combined EFDC and LSTM models[J]. Journal of Environmental Management,2021,295:113060. doi: 10.1016/j.jenvman.2021.113060
    [16] TANG G L, ZHU Y Q, WU G Z, et al. Modelling and analysis of hydrodynamics and water quality for rivers in the northern cold region of China[J]. International Journal of Environmental Research and Public Health,2016,13(4):408. doi: 10.3390/ijerph13040408
    [17] LI Y P, TANG C Y, WANG C, et al. Improved Yangtze River diversions: are they helping to solve algal bloom problems in Lake Taihu, China[J]. Ecological Engineering,2013,51:104-116. doi: 10.1016/j.ecoleng.2012.12.077
    [18] DAI C, TAN Q, LU W T, et al. Identification of optimal water transfer schemes for restoration of a eutrophic lake: an integrated simulation-optimization method[J]. Ecological Engineering,2016,95:409-421. doi: 10.1016/j.ecoleng.2016.06.080
    [19] 崔希东, 尹新明, 尹俊岭.衡水湖湿地水环境现状及治理措施研究[J]. 海河水利,2011(1):18-20. doi: 10.3969/j.issn.1004-7328.2011.01.006

    CUI X D, YIN X M, YIN J L. Study on the present situation of Hengshui Lake wetland water environment and its control measures[J]. Haihe Water Resources,2011(1):18-20. doi: 10.3969/j.issn.1004-7328.2011.01.006
    [20] 江大勇.衡水湖动植物资源调查研究[J]. 现代农村科技,2021(3):98.
    [21] LIANG C, LI X W, ZHUGE H J. The analysis and evaluation of wetland restoration scenarios in the Hengshui Lake national nature reserve, Hebei, China[J]. Advanced Materials Research, 2013, 864/865/866/867: 1121-1127.
    [22] 王贺年, 张曼胤, 郭子良, 等.衡水湖底泥中7种重金属元素含量的分布及其潜在生态风险评价[J]. 湿地科学,2020,18(2):191-199.

    WANG H N, ZHANG M Y, GUO Z L, et al. Distribution of contents of 7 kinds of heavy metal elements in the sediments of Hengshui Lake and their ecological risk assessment[J]. Wetland Science,2020,18(2):191-199.
    [23] 王贺年, 张曼胤, 崔丽娟, 等.基于DPSIR模型的衡水湖湿地生态环境质量评价[J]. 湿地科学,2019,17(2):193-198.

    WANG H N, ZHANG M Y, CUI L J, et al. Evaluation of ecological environment quality of Hengshui Lake wetlands based on DPSIR model[J]. Wetland Science,2019,17(2):193-198.
    [24] 王永亮.衡水湖水位影响因子机理分析与预测预警研究[J]. 水科学与工程技术,2020(3):55-60.

    WANG Y L. The mechanism of the influence factors of the water level of Hengshui Lake and its prediction and early warning[J]. Water Sciences and Engineering Technology,2020(3):55-60.
    [25] GAO L L, LI D L. A review of hydrological/water-quality models[J]. Frontiers of Agricultural Science and Engineering,2014,1(4):267. doi: 10.15302/J-FASE-2014041
    [26] HAMRICK J. A Three-dimensional environmental fluid dynamics computer code: theoretical and computational aspects[R]. Williamsburg, Virginia: Virginia Institute of Marine Science, College of William and Mary, 1992.
    [27] WU G Z, XU Z X. Prediction of algal blooming using EFDC model: case study in the Daoxiang Lake[J]. Ecological Modelling,2011,222(6):1245-1252. doi: 10.1016/j.ecolmodel.2010.12.021
    [28] 赵艳民, 马迎群, 张雷, 等.基于水龄的河道型水库总磷评价标准参考值研究[J]. 水生态学杂志,2022,43(3):51-56.

    ZHAO Y M, MA Y Q, ZHANG L, et al. An assessment standard reference value for total phosphorus in river-type reservoirs based on water residence time[J]. Journal of Hydroecology,2022,43(3):51-56.
    [29] XU S, HE G J, FANG H W, et al. Parameter uncertainty and sensitivity analysis of the three Gorges Reservoir and Xiangxi River EFDC model[J]. Journal of Hydrology,2022,610:127881. doi: 10.1016/j.jhydrol.2022.127881
    [30] WU T, SU B L, WU H X, et al. Scenario optimization of water supplement and outflow management in Yilong Lake based on the EFDC model[J]. Hydrology Research,2022,53(4):519-531. doi: 10.2166/nh.2022.113
    [31] LÜ C, ZHANG F, LIU Z H, et al. Three-dimensional numerical simulation of sediment transport in Lake Tai based on EFDC model[J]. Journal of Food, Agriculture and Environment,2013,11:1343-1348.
    [32] 郝文彬, 唐春燕, 滑磊, 等.引江济太调水工程对太湖水动力的调控效果[J]. 河海大学学报(自然科学版),2012,40(2):129-133.

    HAO W B, TANG C Y, HUA L, et al. Effects of water diversion from Yangtze River to Taihu Lake on hydrodynamic regulation of Taihu Lake[J]. Journal of Hohai University (Natural Sciences),2012,40(2):129-133.
    [33] QI L Y, XIONG A L, WU F W, et al. A real-time assessment of aquatic ecological health using a process-based model: an example from Lake Poyang, China[J]. Frontiers in Environmental Science,2022,10:881335. doi: 10.3389/fenvs.2022.881335
    [34] 张锦鹏, 吴越, 田泽斌, 等.基于EFDC模型的洱海水温模拟[J]. 环境工程技术学报,2020,10(3):368-376.

    ZHANG J P, WU Y, TIAN Z B, et al. Water temperature simulation of Lake Erhai based on EFDC model[J]. Journal of Environmental Engineering Technology,2020,10(3):368-376.
    [35] CHEN L Q, LI L H, ZHOU Y Q, et al. Effect of low temperature water discharged from large reservoir on aquatic ecosystem and agricultural production[J]. IOP Conference Series:Earth and Environmental Science,2018,191:012065. doi: 10.1088/1755-1315/191/1/012065
    [36] TORRES-BEJARANO F M, PADILLA J, RODRÍGUEZ-CUEVAS C, et al. Hydrodynamics modelling utilizing the EFDC explorer model for the sustainable management of Canal del Dique-Guajaro hydrosystem, Colombia[J]. WIT Transactions on the Built Environment,2015,168:423-434.
    [37] LI Y P, ACHARYA K, YU Z B. Modeling impacts of Yangtze River water transfer on water ages in Lake Taihu, China[J]. Ecological Engineering,2011,37(2):325-334. doi: 10.1016/j.ecoleng.2010.11.024
    [38] 于珊, 李一平, 程一鑫, 等.调水引流工程对平原河网水动力调控的效果[J]. 湖泊科学,2021,33(2):462-473. doi: 10.18307/2021.0212

    YU S, LI Y P, CHENG Y X, et al. The impacts of water diversion on hydrodynamic regulation of plain river network[J]. Journal of Lake Sciences,2021,33(2):462-473. doi: 10.18307/2021.0212
    [39] 谢培, 乔飞, 秦延文, 等.三峡库区水质和水龄数值模拟研究[J]. 环境科学学报,2021,41(2):574-582.

    XIE P, QIAO F, QIN Y W, et al. Numerical simulation of water quality and water age in the Three Gorges Reservoir[J]. Acta Scientiae Circumstantiae,2021,41(2):574-582.
    [40] 潘泓哲, 李一平, 唐春燕, 等.多目标优化下平原河网引调水改善水环境效果评估[J]. 湖泊科学,2021,33(4):1138-1152. doi: 10.18307/2021.0415

    PAN H Z, LI Y P, TANG C Y, et al. Evaluation of the effect of water diversion on improving water environment in plain river network under the multi-objective optimization[J]. Journal of Lake Sciences,2021,33(4):1138-1152. doi: 10.18307/2021.0415
    [41] 张又, 刘凌, 姚秀岚, 等.“引江济太”调水中望虞河水质变化的规律[J]. 水资源保护,2013,29(2):53-57.

    ZHANG Y, LIU L, YAO X L, et al. Variation of water quality of Wangyu River during water diversion from Yangtze River to Taihu Lake[J]. Water Resources Protection,2013,29(2):53-57.
    [42] 陈焰, 夏瑞, 王璐, 等.基于SWMM-EFDC耦合模拟的新凤河流域水环境治理工程效应评估[J]. 环境工程技术学报,2021,11(4):777-788. ⊕
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  204
  • HTML全文浏览量:  150
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-15
  • 录用日期:  2023-04-06
  • 修回日期:  2023-04-03

目录

    /

    返回文章
    返回