留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南水北调东线工程沿线湖泊表层沉积物重金属污染特征及生态风险评价

张家根 黄天寅 陈书琴 武宇圣 庞燕 许秋瑾

张家根,黄天寅,陈书琴,等.南水北调东线工程沿线湖泊表层沉积物重金属污染特征及生态风险评价[J].环境工程技术学报,2023,13(4):1354-1363 doi: 10.12153/j.issn.1674-991X.20220913
引用本文: 张家根,黄天寅,陈书琴,等.南水北调东线工程沿线湖泊表层沉积物重金属污染特征及生态风险评价[J].环境工程技术学报,2023,13(4):1354-1363 doi: 10.12153/j.issn.1674-991X.20220913
ZHANG J G,HUANG T Y,CHEN S Q,et al.Pollution characteristics and ecological risk assessment of heavy metals in surface sediments of lakes along the east route of South-to-North Water Diversion Project[J].Journal of Environmental Engineering Technology,2023,13(4):1354-1363 doi: 10.12153/j.issn.1674-991X.20220913
Citation: ZHANG J G,HUANG T Y,CHEN S Q,et al.Pollution characteristics and ecological risk assessment of heavy metals in surface sediments of lakes along the east route of South-to-North Water Diversion Project[J].Journal of Environmental Engineering Technology,2023,13(4):1354-1363 doi: 10.12153/j.issn.1674-991X.20220913

南水北调东线工程沿线湖泊表层沉积物重金属污染特征及生态风险评价

doi: 10.12153/j.issn.1674-991X.20220913
基金项目: 国家水体污染控制与治理科技重大专项(2017ZX07301-006-06)
详细信息
    作者简介:

    张家根(1998—),男,硕士研究生,主要从事湖泊水污染防治研究,1011559275@qq.com

    通讯作者:

    庞燕(1970—),女,研究员,主要从事湖泊水污染控制及生态修复研究,190068749@qq.com

    许秋瑾(1970—),女,研究员,主要从事湖泊富营养化机理、水体生态修复研究,xuqj@craes.org.cn

  • 中图分类号: X524

Pollution characteristics and ecological risk assessment of heavy metals in surface sediments of lakes along the east route of South-to-North Water Diversion Project

  • 摘要:

    以南水北调东线工程的南四湖、骆马湖、洪泽湖、高邮湖为研究对象,通过优劣解距离多指标综合评价模型(TOPSIS法)和潜在生态风险指数法分析4个湖泊表层沉积物中7种重金属(Cr、Cu、Ni、Zn、Pb、Cd、As)空间分布特征及生态风险,并与我国五大湖区其他湖泊进行对比分析。结果显示:4个湖泊表层沉积物重金属浓度均低于同在东部平原湖区的太湖、巢湖、洞庭湖、鄱阳湖等湖泊,但高于蒙新、青藏、东北山地与平原湖区的湖泊,不同区域湖泊沉积物重金属分布具有明显的差异,除了地质构造特征外,工农业生产等人类活动也是导致湖泊沉积物重金属存在差异的主要因素;TOPSIS法评价结果显示,4个湖泊表层沉积物重金属综合风险存在一定空间差异,可能受沿线陆域土地利用类型变化、工农业生产等人类活动等因素的影响,重金属污染程度排序为南四湖>高邮湖>洪泽湖>骆马湖;4个湖泊表层沉积物重金属综合潜在生态风险水平为低,但Cd单项重金属存在中度至较高潜在生态风险。建议加强南水北调东线工程沿线湖泊周边工农业生产排放的监管,进一步调整和优化各湖泊沿线的产业结构,同时加强重金属特别是Cd等入湖的管控,以确保南水北调东线工程沿线湖泊的水环境安全。

     

  • 图  1  研究区概况及采样点分布

    Figure  1.  Survey of research area and distribution of sampling points

    图  2  4个湖泊表层沉积物重金属浓度及差异性分析

    注:*表示P<0.05;**表示P<0.01;***表示P<0.001。

    Figure  2.  Analysis of heavy metal concentration and differential analysis of surface sediments of the four lakes

    图  3  4个湖泊表层沉积物重金属综合风险指数空间分布

    Figure  3.  Spatial distribution of composite evaluation index of heavy metals in surface sediments of the four lakes

    图  4  4个湖泊表层沉积物重金属潜在生态风险评价结果

    Figure  4.  Evaluation results of potential ecological risk of heavy metals in surface sediments of the four lakes

    表  1  山东省、江苏省土壤环境重金属元素背景值[24]

    Table  1.   Background values of heavy metal elements in soil environment of Shandong and Jiangsu Province mg/kg 

    省份CrNiCuZnAsCdPb
    山东省6031.633.9907.50.07715
    江苏省75.632.823.464.89.40.08522
    下载: 导出CSV

    表  2  Er j、RI评价等级划分

    Table  2.   Evaluation grade division of Erj and RI

    Erj单项重金属潜在生态
    风险评价等级
    RI综合潜在生态
    风险评价等级
    <40<150
    40~80中等150~300中等
    80~160较高300~600较高
    160~320≥600
    ≥320极高
    下载: 导出CSV

    表  3  4个湖泊与我国五大湖区典型湖泊表层沉积物重金属浓度对比

    Table  3.   Comparison of heavy metal concentrations in surface sediments of the four lakes and typical lakes in the five geographic regions of China mg/kg 

    湖区湖泊年份Cr浓度Cu浓度Ni浓度Zn浓度Pb浓度Cd浓度As浓度
    东部平原湖区南四湖202187.1830.1536.7481.4715.320.2517.46
    骆马湖202169.3026.8535.7173.0922.120.1510.82
    洪泽湖202167.4927.3035.9184.3223.130.1714.42
    高邮湖202163.0127.0331.9285.2125.060.2216.07
    太湖[28]202182.3032.8043.91109.7335.100.55
    巢湖[29]2020168.2427.6735.54142.0456.010.4226.08
    洞庭湖[30]202193.4737.9834.47147.1936.050.5621.23
    鄱阳湖[31]201970.2039.80119.4343.060.7919.60
    东北平原与山地湖区兴凯湖[26]201575.9519.6525.3560.3521.630.1411.47
    五大连池[26]201592.0732.2838.3582.7424.700.1613.82
    镜泊湖[26]201590.7832.4547.40126.2528.980.2617.45
    蒙新高原湖区乌梁素海[32]202143.1153.7446.3394.695.860.253.64
    博斯腾湖[33]201934.1417.1718.1040.2013.210.127.72
    乌伦古湖[34]202143.5232.0557.4114.150.185.55
    青藏高原湖区青海湖[35]202045.4418.0221.0657.4118.060.2113.21
    纳木错[36]201538.4018.7023.0057.6022.100.17
    羊卓雍错[26]201555.7330.2733.3067.8321.470.1127.83
    云贵高原湖区滇池[37]202072.70110.6389.02137.6546.090.1422.56
    洱海[38]2017159.4299.0384.39146.7262.35
    异龙湖[39]201977.6022.6628.8380.0541.890.2420.45
    下载: 导出CSV

    表  4  4个湖泊表层沉积物重金属浓度归一化指标

    Table  4.   Normalized index of heavy metal contents in surface sediments of the four lakes

    湖泊CrCuNiZnPbCdAs
    南四湖1.0001.0001.0000.6910.0001.0001.000
    骆马湖0.2600.0000.5280.0000.6980.0000.000
    洪泽湖0.1850.1370.3100.9270.8020.1740.542
    高邮湖0.0000.0560.0001.0001.0000.6900.790
    下载: 导出CSV

    表  5  4个湖泊表层沉积物重金属污染程度综合评价对比

    Table  5.   Comprehensive evaluation and comparison of heavy metal pollution in surface sediments of the four lakes

    湖泊DD+Ci
    南四湖2.5451.4470.637
    骆马湖0.6572.6380.199
    洪泽湖1.6111.9340.454
    高邮湖1.8632.0460.476
    下载: 导出CSV

    表  6  4个湖泊与我国五大湖区湖泊表层沉积物重金属Er j、RI对比

    Table  6.   Comparison of Erj、RI of heavy metals in surface sediments of the four lakes and typical lakes in the five geographic regions of China

    湖区湖泊ErjRI生态风险
    等级
    CrCuNiZnPbCdAs
    东部平原湖区南四湖2.914.457.090.915.1196.3620.61137.42
    骆马湖1.815.745.901.135.0354.2711.5185.41
    洪泽湖1.795.835.471.305.2660.0215.3495.01
    高邮湖1.675.784.861.315.7094.7117.09131.12
    鄱阳湖[32]2.4513.805.563.109.19181.59393.98较高
    太湖[29]2.287.527.361.868.16134.23161.41中等
    东北平原与山地湖区五大连池[27]1.624.210.873.1021.958.9140.66
    蒙新高原湖区博斯腾湖[34]1.155.264.290.896.2835.8253.69
    云贵高原湖区滇池[38]1.905.504.801.908.05119.0515.80157.00中等
    青藏高原湖区青海湖[36]1.684.574.220.894.4146.0111.3376.57
    羊卓雍错[27]2.055.085.221.015.5831.7912.0562.78
    下载: 导出CSV
  • [1] GUO C B, CHEN Y S, XIA W T, et al. Eutrophication and heavy metal pollution patterns in the water suppling lakes of China's South-to-North Water Diversion Project[J]. Science of the Total Environment,2020,711:134543. doi: 10.1016/j.scitotenv.2019.134543
    [2] YU M, WANG C R, LIU Y, et al. Sustainability of mega water diversion projects: experience and lessons from China[J]. Science of the Total Environment,2018,619/620:721-731. doi: 10.1016/j.scitotenv.2017.11.006
    [3] ZHAO Z H, GONG X H, DING Q Q, et al. Environmental implications from the priority pollutants screening in impoundment reservoir along the eastern route of China's South-to-North Water Diversion Project[J]. Science of the Total Environment,2021,794:148700. doi: 10.1016/j.scitotenv.2021.148700
    [4] UNGUREANU G, SANTOS S, BOAVENTURA R, et al. Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption[J]. Journal of Environmental Management,2015,151:326-342.
    [5] 魏伟伟, 李春华, 叶春, 等.基于底泥重金属污染及生态风险评价的星云湖疏浚深度判定[J]. 环境工程技术学报,2020,10(3):385-391.

    WEI W W, LI C H, YE C, et al. Determination of dredging depth of Xingyun Lake based on heavy metal pollution and ecological risk assessment of sediment[J]. Journal of Environmental Engineering Technology,2020,10(3):385-391.
    [6] 张雅然, 付正辉, 王书航, 等.基于Web of Science和CNKI的湖泊沉积物文献计量分析[J]. 环境工程技术学报,2022,12(1):110-118.

    ZHANG Y R, FU Z H, WANG S H, et al. Bibliometric analysis of lake sediments based on Web of Science and CNKI[J]. Journal of Environmental Engineering Technology,2022,12(1):110-118.
    [7] 赵艳民, 秦延文, 曹伟, 等.洞庭湖表层沉积物重金属赋存形态及生态风险评价[J]. 环境科学研究,2020,33(3):572-580.

    ZHAO Y M, QIN Y W, CAO W, et al. Speciation and ecological risk of heavy metals in surface sediments of Dongting Lake[J]. Research of Environmental Sciences,2020,33(3):572-580.
    [8] 赵斌, 朱四喜, 杨秀琴, 等.草海湖沉积物中重金属污染现状及生态风险评价[J]. 环境科学研究,2019,32(2):235-245.

    ZHAO B, ZHU S X, YANG X Q, et al. Pollution status and ecological risk assessment of heavy metals in sediments of Caohai Lake[J]. Research of Environmental Sciences,2019,32(2):235-245.
    [9] FAISAL M, WU Z N, WANG H L, et al. Assessment and source apportionment of water-soluble heavy metals in road dust of Zhengzhou, China[J]. Environmental Science and Pollution Research,2022,29(45):68857-68869. doi: 10.1007/s11356-022-20666-4
    [10] 李文博, 林建宇, 周强, 等.骆马湖现代沉积物137Cs和210Pbex的测定分析与环境指示意义[J]. 环境监测管理与技术,2021,33(5):41-45.

    LI W B, LIN J Y, ZHOU Q, et al. Determination and environmental implications of 137Cs and 210Pbex in modern sediment from Luoma Lake[J]. The Administration and Technique of Environmental Monitoring,2021,33(5):41-45.
    [11] 陈乾坤, 刘涛, 胡志新, 等.江苏省西部湖泊表层沉积物中重金属分布特征及其潜在生态风险评价[J]. 农业环境科学学报,2013,32(5):1044-1050.

    CHEN Q K, LIU T, HU Z X, et al. Distribution and ecological risk assessment of heavy metals in surface sediments from the lakes of west Jiangsu Province[J]. Journal of Agro-Environment Science,2013,32(5):1044-1050.
    [12] 李宝, 张智慧, 王志奇, 等.山东南四湖底泥典型重金属的形态分布、稳定度与风险评价[J]. 环境化学,2022,41(3):940-948.

    LI B, ZHANG Z H, WANG Z Q, et al. Fraction distribution, stability and risk assessment of typical heavy metals in sediment of Nansi Lake, Shandong Province, China[J]. Environmental Chemistry,2022,41(3):940-948.
    [13] 訾鑫源, 张鸣, 谷孝鸿,等.洪泽湖围栏养殖对表层沉积物重金属含量影响与生态风险评价[J]. 环境科学,2021,42(11):5355-5363.

    ZI X Y, ZHANG M, GU X H, et al. Impact of enclosure culture on heavy metal content in surface sediments of Hongze Lake and ecological risk assessment[J]. Environmental Science,2021,42(11):5355-5363.
    [14] DIVYA K R, ZHAO S S, CHEN Y S, et al. A comparison of zooplankton assemblages in Nansi Lake and Hongze Lake, potential influences of the East Route of the South-to-North Water Transfer Project, China[J]. Journal of Oceanology and Limnology,2021,39(2):623-636. doi: 10.1007/s00343-020-9288-1
    [15] LI S H, GUO W, YIN Y, et al. Environmental changes inferred from lacustrine sediments and historical literature: a record from Gaoyou Lake, Eastern China[J]. Quaternary International,2015,380/381:350-357. doi: 10.1016/j.quaint.2015.01.010
    [16] CAI Y, KE C Q, SHEN X Y. Variations in water level, area and volume of Hongze Lake, China from 2003 to 2018[J]. Journal of Great Lakes Research,2020,46(6):1511-1520. doi: 10.1016/j.jglr.2020.08.024
    [17] WANG B Y, LIN J Y, WU X G, et al. Spatial distributions and risk assessments of nutrients and heavy metalsin sediments from an impounded lake of China's South-to-North Water Diversion Project[J]. Environmental Science and Pollution Research,2021,28(44):63305-63318. doi: 10.1007/s11356-021-14949-5
    [18] FEI J, PEI Q, ZHONG Y Q. Water level changes of Lake Nansi in East China during 1758-1902[J]. Regional Environmental Change,2021,21(1):17. doi: 10.1007/s10113-020-01741-3
    [19] 姜霞, 王书航. 沉积物质量调查评估手册[M]. 北京: 科学出版社, 2012.
    [20] YANG T, ZHANG Q, WAN X H, et al. Comprehensive ecological risk assessment for semi-arid basin based on conceptual model of risk response and improved TOPSIS model:a case study of Wei River Basin, China[J]. Science of the Total Environment,2020,719:137502. doi: 10.1016/j.scitotenv.2020.137502
    [21] SINGH K R, DUTTA R, KALAMDHAD A S, et al. Risk characterization and surface water quality assessment of Manas River, Assam (India) with an emphasis on the TOPSIS method of multi-objective decision making[J]. Environmental Earth Sciences,2018,77(23):780. doi: 10.1007/s12665-018-7970-9
    [22] 王伟, 樊祥科, 黄春贵, 等.江苏省五大湖泊水体重金属的监测与比较分析[J]. 湖泊科学,2016,28(3):494-501. doi: 10.18307/2016.0304

    WANG W, FAN X K, HUANG C G, et al. Monitoring and comparison analysis of heavy metals in the five great lakes in Jiangsu Province[J]. Journal of Lake Sciences,2016,28(3):494-501. doi: 10.18307/2016.0304
    [23] HAKANSON L. An ecological risk index for aquatic pollution control: a sedimentological approach[J]. Water Research,1980,14(8):975-1001. doi: 10.1016/0043-1354(80)90143-8
    [24] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
    [25] 金相灿. 中国湖泊环境[M]. 北京: 中国环境科学出版社, 1995.
    [26] GUO W, HUO S L, XI B D, et al. Heavy metal contamination in sediments from typical lakes in the five geographic regions of China: distribution, bioavailability, and risk[J]. Ecological Engineering,2015,81:243-255. doi: 10.1016/j.ecoleng.2015.04.047
    [27] ZHANG Z Y, ABUDUWAILI J, JIANG F Q. Heavy metal contamination, sources, and pollution assessment of surface water in the Tianshan Mountains of China[J]. Environmental Monitoring and Assessment,2015,187(2):33. doi: 10.1007/s10661-014-4191-x
    [28] NIU Y, JIANG X, WANG K, et al. Meta analysis of heavy metal pollution and sources in surface sediments of Lake Taihu, China[J]. Science of the Total Environment,2020,700:134509. doi: 10.1016/j.scitotenv.2019.134509
    [29] 夏建东, 龙锦云, 高亚萍, 等.巢湖沉积物重金属污染生态风险评价及来源解析[J]. 地球与环境,2020,48(2):220-227.

    XIA J D, LONG J Y, GAO Y P, et al. Ecological risk assessment and source analysis of heavy metal pollutions in sediments of the Chaohu Lake[J]. Earth and Environment,2020,48(2):220-227.
    [30] 尹宇莹, 彭高卓, 谢意南, 等.洞庭湖表层沉积物中营养元素、重金属的污染特征与评价分析[J]. 环境化学,2021,40(8):2399-2409.

    YIN Y Y, PENG G Z, XIE Y N, et al. Characteristics and risk assessment of nutrients and heavy metals pollution in sediments of Dongting Lake[J]. Environmental Chemistry,2021,40(8):2399-2409.
    [31] LI Y H, KUANG H, HU C, et al. Source apportionment of heavy metal pollution in agricultural soils around the Poyang Lake region using UNMIX model[J]. Sustainability,2021,13:5272. doi: 10.3390/su13095272
    [32] 杜彩丽, 黎佳茜, 李国文, 等.乌梁素海表层沉积物中营养盐和重金属分布特征以及风险评价[J]. 环境科学,2022,43(12):5598-5607.

    DU C L, LI J X, LI G W, et al. Distribution and risk assessment on the nutrients and heavy metals in surface sediments of Wuliangsuhai Lake[J]. Environmental Science,2022,43(12):5598-5607.
    [33] MA L, ABUDUWAILI J, LIU W. Spatial distribution and ecological risks of the potentially-toxic elements in the surface sediments of Lake Bosten, China[J]. Toxics,2020,8(3):77. doi: 10.3390/toxics8030077
    [34] 谢继斌, 彭小武, 胡光胜, 等.新疆乌伦古湖表层沉积物重金属形态及污染水平[J]. 新疆环境保护,2021,43(4):23-29.

    XIE J B, PENG X W, HU G S, et al. Study on forms and pollution levels of heavy metals in surface sediments of Ulungu Lake[J]. Environmental Protection of Xinjiang,2021,43(4):23-29.
    [35] 张雅然. 青海湖流域沉积物重金属分布特征与生态风险评价[D]. 北京: 华北电力大学(北京), 2022.
    [36] 杨安, 邢文聪, 王小霞, 等.西藏中部河流、湖泊表层沉积物及其周边土壤重金属来源解析及风险评价[J]. 中国环境科学,2020,40(10):4557-4567.

    YANG A, XING W C, WANG X X, et al. Source and risk assessment of heavy metals in surface sediments of rivers, lakes and their surrounding soils in central Tibet[J]. China Environmental Science,2020,40(10):4557-4567.
    [37] LIU X, ZHANG J Q, HUANG X L, et al. Heavy metal distribution and bioaccumulation combined with ecological and human health risk evaluation in a typical urban plateau lake, Southwest China[J]. Frontiers in Environmental Science,2022,10:814678. doi: 10.3389/fenvs.2022.814678
    [38] LIU H J, LIU E F, YU Z Z, et al. Spatio-temporal accumulation patterns of trace metals in sediments of a large plateau lake (Erhai) in Southwest China and their relationship with human activities over the past century[J]. Journal of Geochemical Exploration,2022,234:106943. doi: 10.1016/j.gexplo.2022.106943
    [39] 李小林, 刘恩峰, 于真真, 等.异龙湖沉积物重金属人为污染与潜在生态风险[J]. 环境科学,2019,40(2):1-14.

    LI X L, LIU E F, YU Z Z, et al. Contamination and potential ecological risk assessment of heavy metals in the sediments of Yilong Lake, Southwest China[J]. Environmental Science,2019,40(2):1-14.
    [40] 姜会敏, 郑显鹏, 李文.中国主要湖泊重金属来源及生态风险评估[J]. 中国人口·资源与环境,2018,28(增刊 1):108-112.

    JIANG H M, ZHENG X P, LI W. Source and risk assessment of heavy metal in sediment of China[J]. China Population, Resources and Environment,2018,28(Suppl 1):108-112. ◇
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  141
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-27
  • 网络出版日期:  2023-07-19

目录

    /

    返回文章
    返回