留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

再生水受纳河流自然入渗过程中B(a)P对浅层地下水的影响预测

任杰 马伟芳

任杰,马伟芳.再生水受纳河流自然入渗过程中B(a)P对浅层地下水的影响预测[J].环境工程技术学报,2023,13(3):1061-1069 doi: 10.12153/j.issn.1674-991X.20220832
引用本文: 任杰,马伟芳.再生水受纳河流自然入渗过程中B(a)P对浅层地下水的影响预测[J].环境工程技术学报,2023,13(3):1061-1069 doi: 10.12153/j.issn.1674-991X.20220832
REN J,MA W F.Prediction of the impact of benzo(a)pyrene on shallow groundwater during natural infiltration of reclaimed water-receiving rivers[J].Journal of Environmental Engineering Technology,2023,13(3):1061-1069 doi: 10.12153/j.issn.1674-991X.20220832
Citation: REN J,MA W F.Prediction of the impact of benzo(a)pyrene on shallow groundwater during natural infiltration of reclaimed water-receiving rivers[J].Journal of Environmental Engineering Technology,2023,13(3):1061-1069 doi: 10.12153/j.issn.1674-991X.20220832

再生水受纳河流自然入渗过程中B(a)P对浅层地下水的影响预测

doi: 10.12153/j.issn.1674-991X.20220832
基金项目: 国家自然科学基金项目(51678052)
详细信息
    作者简介:

    任杰(1995—),男,硕士研究生,主要从事土壤-地下水污染治理研究,1304463137@qq.com

    通讯作者:

    马伟芳(1973—),女,教授,主要从事流域生态修复和污染场地修复等研究,mprggy@163.com

  • 中图分类号: X824

Prediction of the impact of benzo(a)pyrene on shallow groundwater during natural infiltration of reclaimed water-receiving rivers

  • 摘要:

    在调查和监测再生水受纳河流凉水河中苯并芘〔B(a)P〕浓度的基础上,利用Hydrus-1D耦合GMS模型研究B(a)P的时空分布和迁移演变,预测再生水受纳河流对地下水水质的影响。结果表明:B(a)P在包气带的垂直入渗率为0.102 m−1,仅为水运移的0.73%。由于吸附和生物降解作用,B(a)P穿透16 m深的包气带时间约为63年,其中吸附和生物降解的贡献率分别为78.4%和19.3%。当B(a)P与地下水相交,受地下水流的推动,B(a)P的迁移以地下水流方向迁移为主。B(a)P在地下水中沿地下水流方向的迁移速率为6.65 m/a,分别为垂直地下水流方向和垂向迁移速率的2.42倍和16.22倍。时空分布表明,地下水中B(a)P浓度随与河流距离的增加而降低,其在平行地下水流方向、垂直地下水流方向和垂向的衰减率常数分别为1.19×10−4、3.05×10−4和3.67×10−3 m−1,与迁移率呈负相关。然而,地下水中B(a)P浓度随入渗时间的延长而增加,积累率为7.3×10−2 d−1。B(a)P的迁移和积累对以地下水为饮用水的沿岸居民造成潜在的危害,导致地下水安全利用范围在20年内将从平行地下水流方向、垂直地下水流方向和垂向的438、276和19.8 m分别缩减至568、324和27.7 m。

     

  • 图  1  研究区域及采样点分布

    Figure  1.  Study area and distrubution of sampling sites

    图  2  地下水流模型边界条件

    Figure  2.  Groundwater flow model boundary condition

    图  3  2016—2020年的月平均降水量和蒸发量

    Figure  3.  Monthly average precipitation and evapotranspiration from 2016 to 2020

    图  4  凉水河中B(a)P的时空分布

    Figure  4.  Temporal and spatial distribution of B(a)P in Liangshui River

    图  5  Hydrus-1D对B(a)P在包气带中长期迁移结果模拟

    Figure  5.  Hydrus-1D simulation results of long-term migration of B(a)P in vadose zone

    图  6  2016—2020年非稳定流模型校准结果

    Figure  6.  Unsteady model calibration results from 2016 to 2020

    图  7  2020年地下水位实测值与预测值之间相关性

    Figure  7.  Correlation between measured and predicted groundwater levels in 2020

    图  8  地下水中B(a)P浓度模拟值与实测值对比

    Figure  8.  Comparison of simulated and observed B(a)P concentrations in groundwater

    图  9  地下水中B(a)P浓度的时空分布预测

    Figure  9.  Predicted spatiotemporal distribution of B(a)P concentration in groundwater

    表  1  Hydrus-1D模型参数

    Table  1.   Hydrus-1D model parameters

    类别土壤理化性质溶质运移参数
    θs/%θr/%αnK/(cm/d)Iρ/(g/cm3)DwKd
    壤土0.470.0240.0361.5114.070.52.424.1687.6
      注:θs为饱和含水率;θr为残余含水率;n为土壤保水参数;I为土壤水力传导系数的经验参数;Kd为污染物在固相和液相中的平衡浓度之比。
    下载: 导出CSV
  • [1] 黄俊霖, 郑明霞, 苏婧, 等.奎河河水入渗对河岸带地下水氨氮和硝酸盐氮浓度的影响[J]. 环境科学研究,2020,33(2):421-430. doi: 10.13198/j.issn.1001-6929.2019.03.09

    HUANG J L, ZHENG M X, SU J, et al. Effects of Kuihe River infiltration on the concentration of ammonia nitrogen and nitrate nitrogen in groundwater of riparian zone[J]. Research of Environmental Sciences,2020,33(2):421-430. doi: 10.13198/j.issn.1001-6929.2019.03.09
    [2] 王树芳, 王丽亚, 王晓红, 等.溶质迁移模型在地下水有机污染源识别中的应用[J]. 环境科学,2012,33(3):760-770. doi: 10.13227/j.hjkx.2012.03.031

    WANG S F, WANG L Y, WANG X H, et al. Solute transport modeling application in groundwater organic contaminant source identification[J]. Environmental Science,2012,33(3):760-770. doi: 10.13227/j.hjkx.2012.03.031
    [3] LI J F, DONG H, XU X, et al. Prediction of the bioaccumulation of PAHs in surface sediments of Bohai Sea, China and quantitative assessment of the related toxicity and health risk to humans[J]. Marine Pollution Bulletin,2016,104(1/2):92-100.
    [4] HE Y, YANG C, HE W, et al. Nationwide health risk assessment of juvenile exposure to polycyclic aromatic hydrocarbons (PAHs) in the water body of Chinese Lakes[J]. Science of the Total Environment,2020,723:138099. doi: 10.1016/j.scitotenv.2020.138099
    [5] HAMID N, SYED J H, JUNAID M, et al. Elucidating the urban levels, sources and health risks of polycyclic aromatic hydrocarbons (PAHs) in Pakistan: implications for changing energy demand[J]. Science of the Total Environment,2018,619/620:165-175. doi: 10.1016/j.scitotenv.2017.11.080
    [6] SAMIA K, DHOUHA A, ANIS C, et al. Assessment of organic pollutants (PAH and PCB) in surface water: sediments and shallow groundwater of Grombalia watershed in northeast of Tunisia[J]. Arabian Journal of Geosciences,2018,11(2):1-9.
    [7] XIANG Y Y, RENE E R, MA W F. Enhanced bio-reductive degradation of fluoroglucocorticoids in the groundwater fluctuation zone by external electron donors: performance, microbial community, and functional genes[J]. Journal of Hazardous Materials,2022,423:127015. doi: 10.1016/j.jhazmat.2021.127015
    [8] WU C F, ZHU H, LUO Y M, et al. Concentrations and potential health hazards of polycyclic aromatic hydrocarbon in shallow groundwater of a metal smelting area in Southeastern China[J]. Science of the Total Environment,2016,569/570:1561-1569. doi: 10.1016/j.scitotenv.2016.06.250
    [9] PAN Z H, LI B H, YANG J, et al. Study on the spatial and temporal distribution and risk assessment of PAHs between river and groundwater: take the typical section of Beijing north canal as an example[J]. Journal of Coastal Research,2020,115(suppl1):361.
    [10] BANSAL V, KIM K H. Review of PAH contamination in food products and their health hazards[J]. Environment International,2015,84:26-38. doi: 10.1016/j.envint.2015.06.016
    [11] IARC. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures[J]. IARC Monogr Eval Carcinog Risks Hum,2010,92:1-853.
    [12] 朱菲菲, 秦普丰, 张娟, 等.我国地下水环境优先控制有机污染物的筛选[J]. 环境工程技术学报,2013,3(5):443-450. doi: 10.3969/j.issn.1674-991X.2013.05.069

    ZHU F F, QIN P F, ZHANG J, et al. Screening of priority organic pollutants in groundwater of China[J]. Journal of Environmental Engineering Technology,2013,3(5):443-450. doi: 10.3969/j.issn.1674-991X.2013.05.069
    [13] 卫生部,国家标准化管理委员会. 生活饮用水卫生标准: GB 5749—2006[S]. 北京: 中国标准出版社, 2006.
    [14] US EPA. Edition of the drinking water standards and health advisories[S]. Washington DC: National Service Center for Environmental Publications. 2018.
    [15] ŠIMŮNEK J, ŠEJNA M, SAITO H, et al. The Hydrus-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media: Version 4.17[M]. California: Department of Environmental Sciences University of California Riverside, 2013: 1-343.
    [16] AGHLMAND, ABBASI. Application of MODFLOW with boundary conditions analyses based on limited available observations: a case study of Birjand Plain in east Iran[J]. Water,2019,11(9):1904. doi: 10.3390/w11091904
    [17] 林挺, 罗飞, 朱艳, 等.Hydrus-1D模型在推导基于保护地下水的土壤风险控制值中的应用[J]. 环境科学,2019,40(12):5640-5648. doi: 10.13227/j.hjkx.201907035

    LIN T, LUO F, ZHU Y, et al. Calculation of the soil risk control value through a Hydrus-1D model for groundwater protection[J]. Environmental Science,2019,40(12):5640-5648. doi: 10.13227/j.hjkx.201907035
    [18] 王颖, 陈雷, 杨洋, 等.基于TMVOC的地下水位波动带苯系物迁移转化模拟[J]. 环境科学研究,2020,33(3):634-642. doi: 10.13198/j.issn.1001-6929.2019.09.22

    WANG Y, CHEN L, YANG Y, et al. Numerical simulation of BTEX migration in groundwater table fluctuation zone based on TMVOC[J]. Research of Environmental Sciences,2020,33(3):634-642. doi: 10.13198/j.issn.1001-6929.2019.09.22
    [19] 李翔, 汪洋, 鹿豪杰, 等.京津冀典型区域地下水污染风险评价方法研究[J]. 环境科学研究,2020,33(6):1315-1321. doi: 10.13198/j.issn.1001-6929.2020.05.29

    LI X, WANG Y, LU H J, et al. Groundwater pollution risk assessment method in a typical area of Beijing-Tianjin-Hebei region[J]. Research of Environmental Sciences,2020,33(6):1315-1321. doi: 10.13198/j.issn.1001-6929.2020.05.29
    [20] KHAYYUN T. Simulation of groundwater flow and migration of the radioactive cobalt-60 from LAMA nuclear facility-Iraq[J]. Water,2018,10(2):176. doi: 10.3390/w10020176
    [21] QIU S W, LIANG X J, XIAO C L, et al. Numerical simulation of groundwater flow in a river valley basin in Jilin urban area, China[J]. Water,2015,7(10):5768-5787. doi: 10.3390/w7105768
    [22] WANG Z R, ZHAO X G, XIE T Y, et al. A comprehensive evaluation model of ammonia pollution trends in a groundwater source area along a river in residential areas[J]. Water,2021,13(14):1924. doi: 10.3390/w13141924
    [23] LAUTZ L K, SIEGEL D I. Modeling surface and ground water mixing in the hyporheic zone using MODFLOW and MT3D[J]. Advances in Water Resources,2006,29(11):1618-1633. doi: 10.1016/j.advwatres.2005.12.003
    [24] 蒙媛. 丰台区地下水模拟研究[D]. 合肥: 合肥工业大学, 2007.
    [25] GUSYEV M A, TOEWS M, MORGENSTERN U, et al. Calibration of a transient transport model to tritium data in streams and simulation of groundwater ages in the western Lake Taupo Catchment, New Zealand[J]. Hydrology and Earth System Sciences,2013,17(3):1217-1227. doi: 10.5194/hess-17-1217-2013
    [26] LU X H, JIN M G. One-dimensional unsaturated flow modeling in Luan representative zone of the North China plain[J]. Journal of China University of Geosciences,2007,18:59-61.
    [27] SAHU S K, PANDIT G G. Estimation of octanol-water partition coefficients for polycylic aromatic hydrocarbons using reverse-phase HPLC[J]. Journal of Liquid Chromatography & Related Technologies,2003,26(1):135-146.
    [28] 聂超. 再生水入渗土壤过程中三种典型EDCs的去除特征[D]. 北京: 北京林业大学. 2016.
    [29] NOORI R, HOOSHYARIPOR F, JAVADI S, et al. PODMT3DMS-Tool: proper orthogonal decomposition linked to the MT3DMS model for nitrate simulation in aquifers[J]. Hydrogeology Journal,2020,28(3):1125-1142. doi: 10.1007/s10040-020-02114-0
    [30] ZHANG H, YANG R X, GUO S S, et al. Modeling fertilization impacts on nitrate leaching and groundwater contamination with HYDRUS-1D and MT3DMS[J]. Paddy and Water Environment,2020,18(3):481-498. doi: 10.1007/s10333-020-00796-6
    [31] DAI F C, GUO Q H. Groundwater response of loess tableland in northwest China under irrigation conditions[J]. Water,2020,12(9):2546. doi: 10.3390/w12092546
    [32] HOU X L, WANG S Q, JIN X R, et al. Using an ETWatch (RS)-UZF-MODFLOW coupled model to optimize joint use of transferred water and local water sources in a saline water area of the North China plain[J]. Water,2020,12(12):3361. doi: 10.3390/w12123361
    [33] KUSHWAHA R K, PANDIT M K, GOYAL R. MODFLOW based groundwater resource evaluation and prediction in Mendha sub-basin, NE Rajasthan[J]. Journal of the Geological Society of India,2009,74(4):449-458. doi: 10.1007/s12594-009-0154-1
    [34] BHUVANESWARAN C, GANESH A. Spatial assessment of groundwater vulnerability using DRASTIC model with GIS in Uppar Odai sub-watershed, Nandiyar, Cauvery Basin, Tamil Nadu[J]. Groundwater for Sustainable Development,2019,9:100270. doi: 10.1016/j.gsd.2019.100270
    [35] HASHEMI H. Steady-state unconfined aquifer simulation of the Gareh-bygone plain, Iran[J]. The Open Hydrology Journal,2012,6(1):58-67. doi: 10.2174/1874378101206010058
    [36] 吕占禄, 张晗, 张金良, 等.沟塘水及其周边浅层地下水中重金属污染特征与健康风险评价[J]. 环境工程技术学报,2020,10(6):971-978. doi: 10.12153/j.issn.1674-991X.20200100

    LÜ Z L, ZHANG H, ZHANG J L, et al. Pollution characteristics and health risk assessment of heavy metals in gully pond water and its surrounding shallow groundwater[J]. Journal of Environmental Engineering Technology,2020,10(6):971-978. doi: 10.12153/j.issn.1674-991X.20200100
    [37] 李书迪, 谢湉, 张荣海, 等.西南某退役化工厂场地地下水污染特征及污染物迁移规律分析[J]. 环境工程技术学报,2022,12(5):1555-1563. doi: 10.12153/j.issn.1674-991X.20210382

    LI S D, XIE T, ZHANG R H, et al. Analysis of groundwater pollution characteristics and pollutant migration law of a decommissioned chemical plant site in Southwest China[J]. Journal of Environmental Engineering Technology,2022,12(5):1555-1563. doi: 10.12153/j.issn.1674-991X.20210382
    [38] 张坤锋, 昌盛, 赵少延, 等.克鲁伦河流域地下水饮用水水源中挥发性有机物的污染特征与风险评价[J]. 环境工程技术学报,2021,11(6):1083-1091. doi: 10.12153/j.issn.1674-991X.20210092

    ZHANG K F, CHANG S, ZHAO S Y, et al. Pollution characteristics and risk assessment of volatile organic compounds in groundwater drinking water sources in Klulun River Basin[J]. Journal of Environmental Engineering Technology,2021,11(6):1083-1091. doi: 10.12153/j.issn.1674-991X.20210092
    [39] 张士超, 姚宏, 向鑫鑫, 等.沈抚新城地下水中PAHs的污染特征及健康风险评价[J]. 环境科学,2019,40(1):248-255. doi: 10.13227/j.hjkx.201805253

    ZHANG S C, YAO H, XIANG X X, et al. Pollution characteristic and risk assessment of polycyclic aromatic hydrocarbons in the groundwater of Shen-fu new city in the Hunhe River Basin[J]. Environmental Science,2019,40(1):248-255. ⊗ doi: 10.13227/j.hjkx.201805253
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  213
  • HTML全文浏览量:  135
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-22

目录

    /

    返回文章
    返回