留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米二氧化钛与磷互作对莱茵衣藻砷累积与生物转化的影响

张鑫 杨帆 于子悦 颜昌宙

张鑫,杨帆,于子悦,等.纳米二氧化钛与磷互作对莱茵衣藻砷累积与生物转化的影响[J].环境工程技术学报,2023,13(4):1404-1414 doi: 10.12153/j.issn.1674-991X.20220728
引用本文: 张鑫,杨帆,于子悦,等.纳米二氧化钛与磷互作对莱茵衣藻砷累积与生物转化的影响[J].环境工程技术学报,2023,13(4):1404-1414 doi: 10.12153/j.issn.1674-991X.20220728
ZHANG X,YANG F,YU Z Y,et al.The interactive effects of titanium dioxide nanoparticles and phosphate on arsenic accumulation and biotransformation in Chlamydomonas reinhardtii[J].Journal of Environmental Engineering Technology,2023,13(4):1404-1414 doi: 10.12153/j.issn.1674-991X.20220728
Citation: ZHANG X,YANG F,YU Z Y,et al.The interactive effects of titanium dioxide nanoparticles and phosphate on arsenic accumulation and biotransformation in Chlamydomonas reinhardtii[J].Journal of Environmental Engineering Technology,2023,13(4):1404-1414 doi: 10.12153/j.issn.1674-991X.20220728

纳米二氧化钛与磷互作对莱茵衣藻砷累积与生物转化的影响

doi: 10.12153/j.issn.1674-991X.20220728
基金项目: 国家自然科学基金项目(21906157)
详细信息
    作者简介:

    张鑫(1997—),女,硕士研究生,主要从事水环境与水生态研究,xinzhang@iue.ac.cn

    通讯作者:

    颜昌宙(1969—),男,研究员,博士,主要从事污染物环境效应与生态风险研究,czyan@iue.ac.cn

  • 中图分类号: X173

The interactive effects of titanium dioxide nanoparticles and phosphate on arsenic accumulation and biotransformation in Chlamydomonas reinhardtii

  • 摘要:

    纳米材料因其较大的比表面积以及较强的反应活性,对砷(As)的环境行为具有一定的调控作用,而这可能对微藻As吸收代谢产生潜在的影响。以模式生物莱茵衣藻(Chlamydomonas reinhardtii)为研究对象,探究不同磷酸盐(PO4 3−)浓度下,纳米二氧化钛(nano-TiO2)对莱茵衣藻中As(Ⅴ)累积和生物转化的影响。结果表明:暴露初期(第1天)nano-TiO2作为载体显著促进了0.013、0.100和0.500 mmol/L PO4 3−处理组藻细胞对As的累积,但随着暴露时间的延长,nano-TiO2的载体效应呈下降趋势;暴露结束后(第8天),nano-TiO2添加组中,进入藻细胞的As(Ⅴ)除了还原成As(Ⅲ)及甲基化成二甲基砷外,还能进一步转化为一种可能为砷糖的未知化合物,且随着PO4 3−浓度的降低,藻细胞内这种砷糖所占比例逐渐增加,这可能会抑制As(Ⅲ)的外排;暴露结束后(第8天),培养基中主要检测到的As形态为As(Ⅴ)和As(Ⅲ),1.0和0.5 mmol/L处理组还有少量二甲基砷。nano-TiO2的添加降低了培养基中As(Ⅲ)的浓度,尤其是0.5和1.0 mmol/L PO4 3−处理组。研究结果表明,纳米材料与PO4 3−的互作可显著改变微藻As的累积与代谢过程。

     

  • 图  1  nano-TiO2在TAP培养基中的保持率

    Figure  1.  Retention rate of nano-TiO2 in TAP medium

    图  2  nano-TiO2在TAP培养基中对As(Ⅴ)的吸附率及吸附量

    Figure  2.  Adsorption rate and adsorption capacity of As(Ⅴ) of nano-TiO2 in TAP medium

    图  3  不同PO43-及nano-TiO2浓度下莱茵衣藻的藻密度变化

    Figure  3.  Density changes of Chlamydomonas reinhardtii under different concentrations of PO4 3− and nano-TiO2

    图  4  不同处理下莱茵衣藻细胞不同生长阶段对As的累积

    注:不同字母代表同一时间点组间差异显著。

    Figure  4.  As accumulation in Chlamydomonas reinhardtii cells at different growth stages in different treatments

    图  5  不同处理下莱茵衣藻细胞中各As形态占比(第8天)

    Figure  5.  Percentage of As speciation in Chlamydomonas reinhardtii cells in different treatments (Day 8)

    图  6  不同形态As的HPLC-ICP-MS谱图

    Figure  6.  HPLC-ICP-MS spectra of As species

    图  7  不同处理下培养基中各As形态占比(第8天)

    Figure  7.  Percentage of As species in culture medium of different treatments (Day 8)

    表  1  试验分组设计

    Table  1.   Experimental group design

    试验组别As(Ⅴ)浓
    度/(μmol/L)
    PO4 3−
    度/(mmol/L)
    nano-TiO2
    度/(mg/L)
    P0.013T0100.0130
    P0.013T2100.0132
    P0.013T20100.01320
    P0.1T0100.10
    P0.1T2100.12
    P0.1T20100.120
    P0.5T0100.50
    P0.5T2100.52
    P0.5T20100.520
    P1.0T0101.00
    P1.0T2101.02
    P1.0T20101.020
    下载: 导出CSV

    表  2  不同条件下的吸附动力学参数

    Table  2.   Adsorption kinetic parameters under different conditions

    试验组别准一级动力学准二级动力学
    k1/〔g/(mg·min)〕R2k2/〔g/(mg·min)〕R2
    P0.013T20.260.950.050.98
    P0.1T20.280.980.101.00
    P0.5T20.200.920.070.98
    P1.0T20.300.870.150.94
    P0.013T200.130.940.080.97
    P0.1T200.130.920.080.95
    P0.5T200.760.920.380.97
    P1.0T200.560.950.360.98
    下载: 导出CSV
  • [1] 王振红, 李金丽, 严雅萌, 等.纳米二氧化钛对三价砷在大型蚤体内累积与毒性的影响[J]. 环境科学研究,2018,31(6):1123-1128. doi: 10.13198/j.issn.1001-6929.2017.04.06

    WANG Z H, LI J L, YAN Y M, et al. Influence of nano-TiO2 on accumulation and toxicity of arsenite in Daphnia magna[J]. Research of Environmental Sciences,2018,31(6):1123-1128. doi: 10.13198/j.issn.1001-6929.2017.04.06
    [2] 曾晨, 郭少娟, 杨立新.汞、镉、铅、砷单一和混合暴露的毒性效应及机理研究进展[J]. 环境工程技术学报,2018,8(2):221-230. doi: 10.3969/j.issn.1674-991X.2018.02.030

    ZENG C, GUO S J, YANG L X. Toxic effects and mechanisms of exposure to single and mixture of mercury, cadmium, lead and arsenic[J]. Journal of Environmental Engineering Technology,2018,8(2):221-230. doi: 10.3969/j.issn.1674-991X.2018.02.030
    [3] 张道勇, 赵勇胜, 潘响亮.胞外聚合物(EPS)在藻菌生物膜去除污水中Cd的作用[J]. 环境科学研究,2004,17(5):52-55. doi: 10.3321/j.issn:1001-6929.2004.05.014

    ZHANG D Y, ZHAO Y S, PAN X L. The role of EPS in removing cadmium in sewage by algae-bacteria biofilm[J]. Research of Environmental Sciences,2004,17(5):52-55. doi: 10.3321/j.issn:1001-6929.2004.05.014
    [4] 李妍丽. 微型绿藻对砷污染水体的生物修复研究[D]. 广州: 华南理工大学, 2012.
    [5] LUO Z X, WANG Z H, YAN Y M, et al. Titanium dioxide nanoparticles enhance inorganic arsenic bioavailability and methylation in two freshwater algae species[J]. Environmental Pollution,2018,238:631-637. doi: 10.1016/j.envpol.2018.03.070
    [6] JIANG Y, PURCHASE D, JONES H, et al. Technical note: effects of arsenate (As5+) on growth and production of glutathione (GSH) and phytochelatins (PCS) in Chlorella vulgaris[J]. International Journal of Phytoremediation,2011,13(8):834-844. doi: 10.1080/15226514.2010.525560
    [7] ZHANG J Y, NI Y Y, DING T D, et al. The role of humic acid in the toxicity of arsenite to the diatom Navicula sp[J]. Environmental Science and Pollution Research International,2014,21(6):4366-4375. doi: 10.1007/s11356-013-2413-3
    [8] NAVARRO E, BAUN A, BEHRA R, et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi[J]. Ecotoxicology (London, England),2008,17(5):372-386. doi: 10.1007/s10646-008-0214-0
    [9] ROBICHAUD C O, UYAR A E, DARBY M R, et al. Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment[J]. Environmental Science & Technology,2009,43(12):4227-4233.
    [10] MUELLER N C, NOWACK B. Exposure modeling of engineered nanoparticles in the environment[J]. Environmental Science & Technology,2008,42(12):4447-4453.
    [11] GOTTSCHALK F, SUN T Y, NOWACK B. Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies[J]. Environmental Pollution,2013,181:287-300. doi: 10.1016/j.envpol.2013.06.003
    [12] GONDIKAS A P, von der KAMMER F, REED R B, et al. Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube Recreational Lake[J]. Environmental Science & Technology,2014,48(10):5415-5422.
    [13] SUN H W, ZHANG X Z, ZHANG Z Y, et al. Influence of titanium dioxide nanoparticles on speciation and bioavailability of arsenite[J]. Environmental Pollution,2009,157(4):1165-1170. doi: 10.1016/j.envpol.2008.08.022
    [14] LUO Z X, LI M T, WANG Z H, et al. Effect of titanium dioxide nanoparticles on the accumulation and distribution of arsenate in Daphnia magna in the presence of an algal food[J]. Environmental Science and Pollution Research International,2018,25(21):20911-20919. doi: 10.1007/s11356-018-2265-y
    [15] 杨舒萍, 杨帆, 董四君, 等.纳米二氧化钛增强五价砷对丰年虾的慢性毒性作用[J]. 环境科学研究,2021,34(12):3002-3011. doi: 10.13198/j.issn.1001-6929.2021.09.04

    YANG S P, YANG F, DONG S J, et al. Titanium dioxide nanoparticles enhanced chronic toxic effects of arsenate in Artemia salina[J]. Research of Environmental Sciences,2021,34(12):3002-3011. doi: 10.13198/j.issn.1001-6929.2021.09.04
    [16] YANG F, ZENG L Q, LUO Z X, et al. Complex role of titanium dioxide nanoparticles in the trophic transfer of arsenic from Nannochloropsis maritima to Artemia salina nauplii[J]. Aquatic Toxicology (Amsterdam, Netherlands),2018,198:231-239. doi: 10.1016/j.aquatox.2018.03.009
    [17] KELLER A A, WANG H T, ZHOU D X, et al. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices[J]. Environmental Science & Technology,2010,44(6):1962-1967.
    [18] ZHANG S Y, RENSING C, ZHU Y G. Cyanobacteria-mediated arsenic redox dynamics is regulated by phosphate in aquatic environments[J]. Environmental Science & Technology,2014,48(2):994-1000.
    [19] 张金羽, 陈双双, 唐林茜, 等.莱茵衣藻对砷酸盐的富集分配和形态转化[J]. 环境化学,2021,40(6):1847-1854. doi: 10.7524/j.issn.0254-6108.2020020703

    ZHANG J Y, CHEN S S, TANG L X, et al. Accumulation, distribution and transformation of arsenate by Chlamydomonas reinhardtii[J]. Environmental Chemistry,2021,40(6):1847-1854. doi: 10.7524/j.issn.0254-6108.2020020703
    [20] LORENC W, KRUSZKA D, KACHLICKI P, et al. Arsenic species and their transformation pathways in marine plants. usefulness of advanced hyphenated techniques HPLC/ICP-MS and UPLC/ESI-MS/MS in arsenic species analysis[J]. Talanta,2020,220:121384. doi: 10.1016/j.talanta.2020.121384
    [21] BRUNELLI A, POJANA G, CALLEGARO S, et al. Agglomeration and sedimentation of titanium dioxide nanoparticles (n-TiO2) in synthetic and real waters[J]. Journal of Nanoparticle Research,2013,15(6):1-10.
    [22] LI L, SILLANPÄÄ M, RISTO M. Influences of water properties on the aggregation and deposition of engineered titanium dioxide nanoparticles in natural waters[J]. Environmental Pollution,2016,219:132-138. doi: 10.1016/j.envpol.2016.09.080
    [23] CHEN L Z, ZHOU L N, LIU Y D, et al. Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii[J]. Ecotoxicology and Environmental Safety,2012,84:155-162. doi: 10.1016/j.ecoenv.2012.07.019
    [24] ZHANG S, DENG R, LIN D H, et al. Distinct toxic interactions of TiO2 nanoparticles with four coexisting organochlorine contaminants on algae[J]. Nanotoxicology,2017,11(9/10):1115-1126.
    [25] WAGLE D, SHIPLEY H J. Adsorption of arsenic (Ⅴ) to titanium dioxide nanoparticles: effect of particle size, solid concentration, and other metals[J]. Environmental Engineering Science,2016,33(5):299-305. doi: 10.1089/ees.2016.0014
    [26] LI Y, CAI X J, GUO J W, et al. UV-induced photoactive adsorption mechanism of arsenite by anatase TiO2 with high surface hydroxyl group density[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014,462:202-210.
    [27] JI J, LONG Z F, LIN D H. Toxicity of oxide nanoparticles to the green algae Chlorella sp.[J]. Chemical Engineering Journal,2011,170(2/3):525-530.
    [28] LAVRINOVIČS A, MEŽULE L, JUHNA T. Microalgae starvation for enhanced phosphorus uptake from municipal wastewater[J]. Algal Research,2020,52:102090. doi: 10.1016/j.algal.2020.102090
    [29] GUPTA K, BHATTACHARYA S, CHATTOPADHYAY D, et al. Ceria associated manganese oxide nanoparticles: synthesis, characterization and arsenic(Ⅴ) sorption behavior[J]. Chemical Engineering Journal,2011,172(1):219-229. doi: 10.1016/j.cej.2011.05.092
    [30] WANG N X, LI Y, DENG X H, et al. Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes[J]. Water Research,2013,47(7):2497-2506. doi: 10.1016/j.watres.2013.02.034
    [31] BUTTON D K, DUNKER S S, MORSE M L. Continuous culture of Rhodotorula rubra: kinetics of phosphate-arsenate uptake, inhibition, and phosphate-limited growth[J]. Journal of Bacteriology,1973,113(2):599-611. doi: 10.1128/jb.113.2.599-611.1973
    [32] WANG Y, ZHANG C H, ZHENG Y H, et al. Bioaccumulation kinetics of arsenite and arsenate in Dunaliella salina under different phosphate regimes[J]. Environmental Science and Pollution Research International,2017,24(26):21213-21221. doi: 10.1007/s11356-017-9758-y
    [33] 谢晓玲, 周蓉, 邓自发.光、温限制后铜绿微囊藻和斜生栅藻的超补偿生长与竞争效应[J]. 生态学报,2014,34(5):1224-1234.

    XIE X L, ZHOU R, DENG Z F. Overcompensation and competitive effects of Microcystis aeruginosa and Scenedesmus obliquus after low temperature and light stresses[J]. Acta Ecologica Sinica,2014,34(5):1224-1234.
    [34] LUO Z X, WANG Z H, YAN Y M, et al. Methods of determining titanium dioxide nanoparticles enhance inorganic arsenic bioavailability and methylation in two freshwater algae species[J]. MethodsX,2018,5:620-625. doi: 10.1016/j.mex.2018.06.004
    [35] ZHANG J Y, ZHOU F, LIU Y X, et al. Effect of extracellular polymeric substances on arsenic accumulation in Chlorella pyrenoidosa[J]. Science of the Total Environment,2020,704:135368. doi: 10.1016/j.scitotenv.2019.135368
    [36] SUN J, CHENG J, YANG Z B, et al. Microstructures and functional groups of Nannochloropsis sp. cells with arsenic adsorption and lipid accumulation[J]. Bioresource Technology,2015,194:305-311. doi: 10.1016/j.biortech.2015.07.041
    [37] DEO R P, SONGKASIRI W, RITTMANN B E, et al. Surface complexation of Neptunium(Ⅴ) onto whole cells and cell components of Shewanella alga: modeling and experimental study[J]. Environmental Science & Technology,2010,44(13):4930-4935.
    [38] 高旋. 胞外高聚物对藻细胞和TiO2纳米颗粒界面作用的影响及机制[D]. 杭州: 浙江大学, 2021.
    [39] 李金丽, 李梦婷, 黄兵, 等.亚砷酸盐提高藻与蚤培养基下纳米二氧化钛的稳定性[J]. 农业环境科学学报,2017,36(2):376-381. doi: 10.11654/jaes.2016-1031

    LI J L, LI M T, HUANG B, et al. Arsenite enhance the stability of nano-TiO2 in aquatic culture media for freshwater algae and daphnia[J]. Journal of Agro-Environment Science,2017,36(2):376-381. doi: 10.11654/jaes.2016-1031
    [40] LI X Y, PAN J F, LU Z Y, et al. Arsenate toxicity to the marine microalga Chlorella vulgaris increases under phosphorus-limited condition[J]. Environmental Science and Pollution Research International,2021,28(36):50908-50918. doi: 10.1007/s11356-021-14318-2
    [41] WANG Z H, LUO Z X, YAN C Z, et al. Arsenic uptake and depuration kinetics in Microcystis aeruginosa under different phosphate regimes[J]. Journal of Hazardous Materials,2014,276:393-399. doi: 10.1016/j.jhazmat.2014.05.049
    [42] XUE X M, YE J, RABER G, et al. Arsenic methyltransferase is involved in arsenosugar biosynthesis by providing DMA[J]. Environmental Science & Technology,2017,51(3):1224-1230.
    [43] MIYASHITA S, FUJIWARA S, TSUZUKI M, et al. Rapid biotransformation of arsenate into oxo-arsenosugars by a freshwater unicellular green alga, Chlamydomonas reinhardtii[J]. Bioscience, Biotechnology, and Biochemistry,2011,75(3):522-530. doi: 10.1271/bbb.100751
    [44] ENDER E, SUBIRANA M A, RAAB A, et al. Why is NanoSIMS elemental imaging of arsenic in seaweed (Laminaria digitata) important for understanding of arsenic biochemistry in addition to speciation information[J]. Journal of Analytical Atomic Spectrometry,2019,34(11):2295-2302. doi: 10.1039/C9JA00187E
    [45] CHEN F R, XIAO Z G, YUE L, et al. Algae response to engineered nanoparticles: current understanding, mechanisms and implications[J]. Environmental Science:Nano,2019,6(4):1026-1042. doi: 10.1039/C8EN01368C
    [46] XUE X M, YE J, RABER G, et al. Identification of steps in the pathway of arsenosugar biosynthesis[J]. Environmental Science & Technology,2019,53(2):634-641.
    [47] GLABONJAT R A, BLUM J S, MILLER L G, et al. Arsenolipids in cultured Picocystis strain ML and their occurrence in biota and sediment from Mono Lake, California[J]. Life (Basel, Switzerland),2020,10(6):93.
    [48] GUO P R, GONG Y, WANG C, et al. Arsenic speciation and effect of arsenate inhibition in a Microcystis aeruginosa culture medium under different phosphate regimes[J]. Environmental Toxicology and Chemistry,2011,30(8):1754-1759. doi: 10.1002/etc.567
    [49] HELLWEGER F L, FARLEY K J, LALL U, et al. Greedy algae reduce arsenate[J]. Limnology and Oceanography,2003,48(6):2275-2288. doi: 10.4319/lo.2003.48.6.2275
    [50] LEVY J L, STAUBER J L, ADAMS M S, et al. Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum)[J]. Environmental Toxicology and Chemistry,2005,24(10):2630-2639. doi: 10.1897/04-580R.1
    [51] CHEN Q Q, HU X L, YIN D Q, et al. Effect of subcellular distribution on nC60 uptake and transfer efficiency from Scenedesmus obliquus to Daphnia magna[J]. Ecotoxicology and Environmental Safety,2016,128:213-221. doi: 10.1016/j.ecoenv.2016.02.026
    [52] GEITNER N K, MARINAKOS S M, GUO C, et al. Nanoparticle surface affinity as a predictor of trophic transfer[J]. Environmental Science & Technology,2016,50(13):6663-6669. ⊗
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  76
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-19
  • 网络出版日期:  2023-07-19

目录

    /

    返回文章
    返回