留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于物质流分析的电解铝氟化物全过程污染防治研究

林雨琛 刘园 银光 党春阁 熊仁艳

林雨琛,刘园,银光,等.基于物质流分析的电解铝氟化物全过程污染防治研究[J].环境工程技术学报,2023,13(2):800-807 doi: 10.12153/j.issn.1674-991X.20220351
引用本文: 林雨琛,刘园,银光,等.基于物质流分析的电解铝氟化物全过程污染防治研究[J].环境工程技术学报,2023,13(2):800-807 doi: 10.12153/j.issn.1674-991X.20220351
LIN Y C,LIU Y,YIN G,et al.Research on fluoride whole-process prevention and control in the electrolytic aluminum enterprise based on material flow analysis[J].Journal of Environmental Engineering Technology,2023,13(2):800-807 doi: 10.12153/j.issn.1674-991X.20220351
Citation: LIN Y C,LIU Y,YIN G,et al.Research on fluoride whole-process prevention and control in the electrolytic aluminum enterprise based on material flow analysis[J].Journal of Environmental Engineering Technology,2023,13(2):800-807 doi: 10.12153/j.issn.1674-991X.20220351

基于物质流分析的电解铝氟化物全过程污染防治研究

doi: 10.12153/j.issn.1674-991X.20220351
详细信息
    作者简介:

    林雨琛(1995—),男,工程师,硕士,主要从事清洁生产、物质流分析相关研究,linyuchen6666@163.com

    通讯作者:

    党春阁(1984—),男,高级工程师,主要从事清洁生产、有色金属冶炼研究,957663292@qq.com

  • 中图分类号: X502

Research on fluoride whole-process prevention and control in the electrolytic aluminum enterprise based on material flow analysis

  • 摘要:

    以国内某大型电解铝企业为例,针对氟化物产生的重点环节进行分析测试,通过物质流分析方法构建电解铝企业氟平衡,研究电解铝生产过程中特征污染物氟化物的分布特征。结果表明:除电解槽大修渣外,无组织烟气以及炭渣是电解铝生产过程中氟化物排放的关键环节,其中无组织烟气中氟化物含量折合单位产品排放量为0.374 kg/t (以Al质量计,全文同),约为有组织排放量的3.7倍;炭渣中氟化物含量为6.347 kg/t,约为大修渣中氟化物含量的2.7倍。为了加强电解铝行业氟化物风险防控,建议从生产全过程入手,通过提高电解槽的集气效率以及科学控制排烟量的方法有效控制无组织排放,优化电解槽排烟管道以提高有组织烟气治理的效率,控制原料含水量从源头减少氟化物的产生,强化含氟固体废物管控,以期减少电解铝企业对周边环境造成的氟污染。

     

  • 图  1  企业A电解铝主要生产工艺及产排污节点

    Figure  1.  Main production processes and pollution production and emission nodes of electrolytic aluminum enterprise A

    图  2  企业A电解车间物料平衡

    注:数字为输入/输出单位产品物料投入/产出量,单位为kg/t。

    Figure  2.  Material balance diagram of electrolysis workshop of enterprise A

    图  3  企业A电解车间氟平衡

    注:数字为输入/输出物料中单位产品氟化物的量,单位为kg/t。

    Figure  3.  Fluorine balance diagram of electrolysis workshop of enterprise A

    图  4  企业A电解车间氟化物流向

    注:数字为输入/输出物料中单位产品氟化物的量,单位为kg/t。

    Figure  4.  Fluorine flow diagram of electrolysis workshop of enterprise A

    表  1  企业A电解车间氟平衡数据

    Table  1.   Fluorine balance data of electrolysis workshop of enterprise A

    类别名称氟化物含量(以氟计)/(kg/t)占比/%来源/去向
    输入氟化铝11.85011.09原料投入
    冰晶石1.2201.14原料投入
    载氟氧化铝17.50616.39干法净化
    阳极破碎料75.71470.89循环
    铝包大修0.038×10−2<0.001循环
    铝包清包料0.5270.49循环
    合计106.817100.00
    输出炭渣6.3476.16危废库
    大修渣2.3572.29危废库
    阳极破碎料75.71473.53循环
    铝包大修0.038×10−2<0.001循环
    铝包清包料0.5270.51循环
    固定污染源0.0960.09外排
    载氟氧化铝17.50617.00循环
    脱硫石膏0.0450.04处置
    无组织排放0.3740.36外排
    合计102.966100.00
      注:输入大于输出,存在一定的平衡误差,但在合理范围内。
    下载: 导出CSV
  • [1] 中共中央 国务院 .中共中央 国务院关于深入打好污染防治攻坚战的意见. [2021-11-02]. http://www.gov.cn/zhengce/2021-11/07/content_5649656.htm.
    [2] 国家发展和改革委员会: 推动电解铝等重点行业绿色低碳转型[J]. 中国有色冶金, 2021, 50(5): 11.
    [3] 尹聚才.关于电解铝产业清洁生产的思考[J]. 中国金属通报,2020(9):12-13. doi: 10.3969/j.issn.1672-1667.2020.17.006

    YIN J C. Thoughts on cleaner production of electrolytic aluminum industry[J]. China Metal Bulletin,2020(9):12-13. doi: 10.3969/j.issn.1672-1667.2020.17.006
    [4] 葛佳佳.碳中和背景下中国电解铝行业出口贸易问题及转型路径[J]. 对外经贸实务,2021(11):55-58. doi: 10.3969/j.issn.1003-5559.2021.11.012

    GE J J. Export trade problems and transformation path of electrolytic aluminum industry in China under the background of carbon neutralization[J]. Practice in Foreign Economic Relations and Trade,2021(11):55-58. doi: 10.3969/j.issn.1003-5559.2021.11.012
    [5] 韩伟, 叶渊, 李彦希, 等.高氟地区电解铝厂场地氟污染特征及其风险评估[J]. 环境工程技术学报,2021,11(4):727-733. doi: 10.12153/j.issn.1674-991X.20200243

    HAN W, YE Y, LI Y X, et al. Fluorine pollution characteristics and risk assessment of electrolytic aluminum plant site in high fluoride area[J]. Journal of Environmental Engineering Technology,2021,11(4):727-733. doi: 10.12153/j.issn.1674-991X.20200243
    [6] 唐剑, 陈湘清, 王波, 等.电解铝碳渣低温火法处理技术研究及应用[J]. 世界有色金属,2021(16):134-137. doi: 10.3969/j.issn.1002-5065.2021.16.060

    TANG J, CHEN X Q, WANG B, et al. Research and application of low temperature fire treatment technology for electrolytic aluminum carbon slag[J]. World Nonferrous Metals,2021(16):134-137. doi: 10.3969/j.issn.1002-5065.2021.16.060
    [7] 郑丽英, 陈红辉, 张松柏, 等.从电解铝阴极炭块处理废水中回收冰晶石[J]. 电镀与涂饰,2021,40(11):889-892. doi: 10.19289/j.1004-227x.2021.11.014

    ZHENG L Y, CHEN H H, ZHANG S B, et al. Recovery of cryolite from the wastewater produced from the treatment of carbon block used as a cathode in aluminum electrolysis[J]. Electroplating & Finishing,2021,40(11):889-892. doi: 10.19289/j.1004-227x.2021.11.014
    [8] 张乐.电解铝大修渣处理研究进展[J]. 世界有色金属,2021(4):154-155. doi: 10.3969/j.issn.1002-5065.2021.04.071

    ZHANG L. Research progress on treatment of electrolytic aluminum spent potlining[J]. World Nonferrous Metals,2021(4):154-155. doi: 10.3969/j.issn.1002-5065.2021.04.071
    [9] 高宇.电解铝工业危废处置技术现状与发展趋势[J]. 有色冶金设计与研究,2019,40(4):33-35. doi: 10.3969/j.issn.1004-4345.2019.04.012

    GAO Y. Current situation and development trend of hazardous waste disposal technology in electrolytic aluminum industry[J]. Nonferrous Metals Engineering & Research,2019,40(4):33-35. doi: 10.3969/j.issn.1004-4345.2019.04.012
    [10] 高康宁, 晁波阳, 申文斌, 等.电解铝厂大修渣污染分析与防治对策[J]. 资源节约与环保,2017(8):134. doi: 10.3969/j.issn.1673-2251.2017.08.074

    GAO K N, CHAO B Y, SHEN W B, et al. Pollution analysis and prevention countermeasures of overhaul slag in electrolytic aluminum plant[J]. Resources Economization & Environmental Protection,2017(8):134. doi: 10.3969/j.issn.1673-2251.2017.08.074
    [11] WANG D Y, WANG H B, LI C L, et al. Process for stabilizing fluorine in electrolytic aluminum spent pot lining by roasting method[J]. IOP Conference Series:Earth and Environmental Science,2021,621(1):012036. doi: 10.1088/1755-1315/621/1/012036
    [12] 张宏忠, 王利, 胡慧丽, 等.电解铝大修渣无害化处理研究[J]. 无机盐工业,2017,49(4):46-50.

    ZHANG H Z, WANG L, HU H L, et al. Harmless treatment of electrolytic aluminum residues[J]. Inorganic Chemicals Industry,2017,49(4):46-50.
    [13] 杜婷婷, 陈开斌, 孙丽贞, 等.铝电解大修渣处置技术探讨[J]. 世界有色金属,2020(1):14-15. doi: 10.3969/j.issn.1002-5065.2020.01.008

    DU T T, CHEN K B, SUN L Z, et al. Discussion on spent potlining disposal technology[J]. World Nonferrous Metals,2020(1):14-15. doi: 10.3969/j.issn.1002-5065.2020.01.008
    [14] OSPINA G, HASSAN M I. Spent pot lining characterization framework[J]. JOM,2017,69(9):1639-1645. doi: 10.1007/s11837-017-2437-0
    [15] 鞠昌华.避免先污染后治理的理论基础及其困境[J]. 鄱阳湖学刊,2017(1):83-89. doi: 10.3969/j.issn.1674-6848.2017.01.011

    JU C H. The theoretical basis and dilemma of avoiding “control after pollution”[J]. Journal of Poyang Lake,2017(1):83-89. doi: 10.3969/j.issn.1674-6848.2017.01.011
    [16] 王天天, 卢笛音, 曹雅.物质流分析方法及应用研究综述[J]. 再生资源与循环经济,2017,10(8):9-12. doi: 10.3969/j.issn.1674-0912.2017.08.005

    WANG T T, LU D Y, CAO Y. A review of material flow analysis methods and application[J]. Recyclable Resources and Circular Economy,2017,10(8):9-12. doi: 10.3969/j.issn.1674-0912.2017.08.005
    [17] 高昂. 循环经济物质流特征与流动规律研究[D]. 西安: 西北大学, 2010.
    [18] 傅泽强, 智静.物质代谢分析框架及其研究述评[J]. 环境科学研究,2010,23(8):1091-1098. doi: 10.13198/j.res.2010.08.116.fuzq.002

    FU Z Q, ZHI J. Review of and analytical framework for metabolism[J]. Research of Environmental Sciences,2010,23(8):1091-1098. doi: 10.13198/j.res.2010.08.116.fuzq.002
    [19] 席冰冰. 基于物质流分析的区域循环经济评价体系研究: 以重庆市为例[D]. 重庆: 重庆大学, 2019.
    [20] AYRES R U, KNEESE A V. Production, consumption, and externalities[M]//The roots of logistics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 363-388.
    [21] UDO D H H, VOET E V D, KLEIJN R. Substance flow analysis (SFA), an analytical tool for integrated chain management[R]//BRINGEZU S, FISCHER-KOWALSKI M, KLEIJN R, et al. Regional and national material flow accounting: from paradigm to practice of sustainability. Bergisches Land, German: Wuppertal Institute for Climate, Environment and Energy, 1997: 32-42.
    [22] 刘毅. 中国磷代谢与水体富营养化控制政策研究[D]. 北京: 清华大学, 2004.
    [23] MA D C, HU S Y, CHEN D J, et al. Substance flow analysis as a tool for the elucidation of anthropogenic phosphorus metabolism in China[J]. Journal of Cleaner Production,2012,29/30:188-198. doi: 10.1016/j.jclepro.2012.01.033
    [24] 杜春丽, 任雪莹, 杜子杰.基于元素流分析的长江经济带总磷污染减量化研究: 以湖北为例[J]. 中国环境管理,2021,13(3):136-145.

    DU C L, REN X Y, DU Z J. Research on the reduction of total phosphorus pollution in the Yangtze River Economic Zone based on substance flow analysis: take Hubei as an example[J]. Chinese Journal of Environmental Management,2021,13(3):136-145.
    [25] 党春阁, 周长波, 吴昊, 等.重金属元素物质流分析方法及案例分析[J]. 环境工程技术学报,2014,4(4):341-345. doi: 10.3969/j.issn.1674-991X.2014.04.055

    DANG C G, ZHOU C B, WU H, et al. Methods of substance flow analysis of heavy metal elements and case study[J]. Journal of Environmental Engineering Technology,2014,4(4):341-345. doi: 10.3969/j.issn.1674-991X.2014.04.055
    [26] 白桦, 田金平, 李炳, 等.中国皮革行业铬元素代谢模型分析(续)[J]. 中国皮革,2018,47(12):21-27. doi: 10.13536/j.cnki.issn1001-6813.2018-012-004

    BAI H, TIAN J P, LI B, et al. Assessment of chromium metabolism in Chinese leather industry[J]. China Leather,2018,47(12):21-27. doi: 10.13536/j.cnki.issn1001-6813.2018-012-004
    [27] 刘宏博, 郝雅琼, 吴昊, 等.铝冶炼行业危险废物产生和利用处置现状与管理对策建议[J]. 环境工程技术学报,2021,11(6):1273-1280. doi: 10.12153/j.issn.1674-991X.20210110

    LIU H B, HAO Y Q, WU H, et al. Present situation of production, utilization and disposal of hazardous waste in aluminium smelting industry and management countermeasures[J]. Journal of Environmental Engineering Technology,2021,11(6):1273-1280. doi: 10.12153/j.issn.1674-991X.20210110
    [28] TONHEIM J, PAULSEN K A , HOLTEN R , et al. Environmental challenges in the prebake line at Hydro Aluminium Karmoy[C]//Light metals. Hydro Aluminium Karmoy, N-4265 Havik, Norway, 2005: 283-287.
    [29] 孙贵杰.数控脉冲管道清洗技术及应用[J]. 管道技术与设备,2020(2):9-10. doi: 10.3969/j.issn.1004-9614.2020.02.003

    SUN G J. NC pulse pipeline cleaning technology and application[J]. Pipeline Technique and Equipment,2020(2):9-10. doi: 10.3969/j.issn.1004-9614.2020.02.003
    [30] 汪林.铝电解槽的氟平衡及降低氟排放的措施分析[J]. 轻金属,2018,475(5):21-25.
    WANG L . An fluorine equilibrium of aluminum reduction pot and measures of reducing fluorine emission [J]. Light Metals,2018,475(5):21-25.
    [31] 李川, 李继涛, 任莉芳, 等.铝电解氟平衡及相关的氟化盐单耗[J]. 当代化工研究,2018(11):105-106. doi: 10.3969/j.issn.1672-8114.2018.11.060

    LI C, LI J T, REN L F, et al. Fluorine balance and related fluoride consumption per unit in aluminum electrolysis[J]. Modern Chemical Research,2018(11):105-106. ◇ doi: 10.3969/j.issn.1672-8114.2018.11.060
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  275
  • HTML全文浏览量:  137
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-15

目录

    /

    返回文章
    返回