留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物炭负载硫化改性纳米零价铁去除水中的Cr(Ⅵ)

潘虹 王兴润 王雷 张羽嘉 颜湘华

潘虹,王兴润,王雷,等.生物炭负载硫化改性纳米零价铁去除水中的Cr(Ⅵ)[J].环境工程技术学报,2023,13(2):663-668 doi: 10.12153/j.issn.1674-991X.20220250
引用本文: 潘虹,王兴润,王雷,等.生物炭负载硫化改性纳米零价铁去除水中的Cr(Ⅵ)[J].环境工程技术学报,2023,13(2):663-668 doi: 10.12153/j.issn.1674-991X.20220250
PAN H,WANG X R,WANG L,et al.Experimental study on the removal of Cr(Ⅵ) from water by biochar-based sulfide modification loaded with nano-zero valent iron[J].Journal of Environmental Engineering Technology,2023,13(2):663-668 doi: 10.12153/j.issn.1674-991X.20220250
Citation: PAN H,WANG X R,WANG L,et al.Experimental study on the removal of Cr(Ⅵ) from water by biochar-based sulfide modification loaded with nano-zero valent iron[J].Journal of Environmental Engineering Technology,2023,13(2):663-668 doi: 10.12153/j.issn.1674-991X.20220250

生物炭负载硫化改性纳米零价铁去除水中的Cr(Ⅵ)

doi: 10.12153/j.issn.1674-991X.20220250
基金项目: 国家重点研发计划项目(2018YFC1802200)
详细信息
    作者简介:

    潘虹(1996—),女,硕士研究生,主要从事铬污染地下水的研究,ph96068@163.com

    通讯作者:

    王兴润(1981—),男,研究员,博士,主要从事铬污染土壤修复研究,wangxr@craes.org.cn

    王雷(1978—),男,教授,博士,主要从事固体废物处理及资源化研究,wlei@njtech.edu.cn

  • 中图分类号: X523

Experimental study on the removal of Cr(Ⅵ) from water by biochar-based sulfide modification loaded with nano-zero valent iron

  • 摘要:

    为研发治理地下水Cr(Ⅵ)污染的可行除铬材料,以碳热法制得生物炭负载纳米零价铁(BC-nZVI),并通过对BC-nZVI硫化改性制备得到改性材料(M-BC-nZVI),采用除铬容量、铬铁比(Cr/Fe)、反应活性分析M-BC-nZVI的除铬优势,通过模拟柱试验建立失效速率模型,从而推算M-BC-nZVI完全失效的除铬容量,最后与相关文献数据进行对比,分析M-BC-nZVI除Cr(Ⅵ)的应用可行性。结果表明:M-BC-nZVI材料的除铬容量、Cr/Fe、拟一级反应速率常数(kobs)分别是BC-nZVI的1.86倍、1.95倍和3.00倍,因此相对于BC-nZVI来说M-BC-nZVI更具除铬优势;各模拟柱在运行过程中无明显堵塞情况,且随着进水浓度的升高,M-BC-nZVI的失效速率常数变大。当失效除铬速率为初始除铬速率的1.0%、进水Cr(Ⅵ)浓度为5 mg/L时,除铬容量最高,可以达到12.70 mg/g;对比M-BC-nZVI与其他文献报道的铁基材料及铁基改性材料的Cr/Fe可知,M-BC-nZVI的Cr/Fe为其他文献的1.06~42.06倍,故从材料的除铬性能来看,M-BC-nZVI应用于可渗透反应墙处理地下水Cr(Ⅵ)污染可行。

     

  • 图  1  模拟柱试验

    Figure  1.  Simulated column experiment

    图  2  材料除铬容量及除铬速率对比

    Figure  2.  Comparison chart of material removal capacity and removal rate of chromium

    图  3  模拟柱每12 h的出水体积

    Figure  3.  Effluent volume of the simulated column every 12 h

    图  4  出水口Cr(Ⅵ)浓度随时间的变化

    Figure  4.  Concentration of outlet Cr(Ⅵ) as a function of time

    图  5  模拟柱除铬速率随时间的变化

    Figure  5.  Chromium removal rate of simulated column as a function of time

    表  1  模拟柱除铬速率拟合参数

    Table  1.   Fitting parameters of simulated column chromium removal rate

    反应模型模拟柱k1/h−1k2/mg−1R2
    拟一级反应1号0.011 60.800 6
    2号0.010 90.960 6
    3号0.009 00.949 0
    拟二级反应1号0.048 20.952 3
    2号0.042 20.972 7
    3号0.035 40.962 2
    下载: 导出CSV

    表  2  除铬总量与除铬容量计算结果

    Table  2.   Calculation results of total amount and capacity of chromium removal

    (失效除铬速率/初始
    除铬速率)/%
    进水Cr(Ⅵ)浓
    度/(mg/L)
    质量/g除铬总
    量/mg
    除铬容量/
    (mg/g)
    1.01511.9135.2711.37
    1011.0132.0612.01
    511.1141.0212.70
    2.51511.9109.429.20
    1011.0111.2510.11
    511.1121.7610.97
    5.01511.989.917.56
    1011.095.448.68
    511.1106.969.64
    下载: 导出CSV

    表  3  不同材料的除铬性能对比

    Table  3.   Comparison of chromium removal performance of different materials

    材料名称pH(Cr/Fe)/(mg/g)数据来源
    S-ZVICu567.50文献[19]
    Fe05.13.50文献[20]
    nZVI547.20文献[21]
    BC-nZVI4.76136.47文献[22]
    nZVI634.1文献[23]
    PSA-nZVI5.6138.80文献[24]
    nZVI(以淀粉为稳定剂)533.33文献[25]
    n-ZVI520.16 文献[25]
    M-BC-nZVI5147.20本研究
    下载: 导出CSV
  • [1] FU F L, MA J, XIE L P, et al. Chromium removal using resin supported nanoscale zero-valent iron[J]. Journal of Environmental Management,2013,128:822-827. doi: 10.1016/j.jenvman.2013.06.044
    [2] 徐腾, 南丰, 蒋晓锋, 等.制革场地土壤和地下水中铬污染来源及污染特征研究进展[J]. 土壤学报,2020,57(6):1341-1352.

    XU T, NAN F, JIANG X F, et al. Progresses in research on sources and characteristics of chromium pollution in soils and groundwater of tannery sites[J]. Acta Pedologica Sinica,2020,57(6):1341-1352.
    [3] 程政乔,姜杰,杨浈.Cr(Ⅵ)污染地下水电动修复过程中的关键指标监测和分析[J]. 环境工程技术学报,2022,12(3):816-823. doi: 10.12153/j.issn.1674-991X.20210492

    CHENG Z Q,JIANG J,YANG Z. Monitoring and analysis of key indicators in the process of electrickinetic remediation of Cr(Ⅵ) contaminated groundwater[J]. Journal of Environmental Engineering Technology,2022,12(3):816-823. doi: 10.12153/j.issn.1674-991X.20210492
    [4] GAO Y, XIA J. Chromium contamination accident in China: viewing environment policy of China[J]. Environmental Science & Technology,2011,45(20):8605-8606.
    [5] DAS N, MATHEW L. Chromium pollution and bioremediation: an overview[M]//Environmental pollution. Dordrecht: Springer Netherlands, 2011: 297-321.
    [6] JOBBY R, JHA P, YADAV A K, et al. Biosorption and biotransformation of hexavalent chromium [Cr(Ⅵ)]: a comprehensive review[J]. Chemosphere,2018,207:255-266. doi: 10.1016/j.chemosphere.2018.05.050
    [7] 田仪娟, 晏超群, 程治良, 等.柑桔皮与铬渣共热解毒六价铬[J]. 无机盐工业,2021,53(12):129-134. doi: 10.19964/j.issn.1006-4990.2021-0118

    TIAN Y J, YAN C Q, CHENG Z L, et al. Detoxification of Cr(Ⅵ) from chromite ore processing residue by pyrolysis with citrus peel[J]. Inorganic Chemicals Industry,2021,53(12):129-134. doi: 10.19964/j.issn.1006-4990.2021-0118
    [8] 施周, 贺维鹏.饮用水水源中重金属污染防控技术与对策[J]. 给水排水,2012,48(8):1-3. doi: 10.13789/j.cnki.wwe1964.2012.08.013
    [9] 张雨婷. 生物质炭对电镀废水中六价铬的去除及机理研究[D]. 长春: 吉林大学, 2020.
    [10] 吴进. 磁性聚合物的制备及其同步去除水中铬和砷污染物的研究[D]. 合肥: 合肥工业大学, 2018.
    [11] CUI J, WANG E D, HOU Z M, et al. Removal of chromium(Ⅵ) from groundwater using oil shale ash supported nanoscaled zero-valent iron[J]. Chemical Research in Chinese Universities,2018,34(4):546-551. doi: 10.1007/s40242-018-8104-3
    [12] 王棣, 魏文侠, 王琳玲, 等.纳米铁原位注入技术对六价铬污染地下水的修复[J]. 环境工程学报,2018,12(2):521-526. doi: 10.12030/j.cjee.201706140

    WANG D, WEI W X, WANG L L, et al. Remediation of chromium(Ⅵ) contaminated groundwater by in situ injection of nanoscale zero valent iron[J]. Chinese Journal of Environmental Engineering,2018,12(2):521-526. doi: 10.12030/j.cjee.201706140
    [13] SHAHID M, SHAMSHAD S, RAFIQ M, et al. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review[J]. Chemosphere,2017,178:513-533. doi: 10.1016/j.chemosphere.2017.03.074
    [14] 王泓泉.污染地下水可渗透反应墙(PRB)技术研究进展[J]. 环境工程技术学报,2020,10(2):251-259. doi: 10.12153/j.issn.1674-991X.20190129

    WANG H Q. Study on permeable reactive barrier technology for the remediation of polluted groundwater[J]. Journal of Environmental Engineering Technology,2020,10(2):251-259. doi: 10.12153/j.issn.1674-991X.20190129
    [15] 刘美丽, 牛其建, 俞洋洋, 等.碳基材料负载纳米零价铁去除六价铬的研究进展[J]. 环境科学研究,2022,35(3):768-779.

    LIU M L, NIU Q J, YU Y Y, et al. Progress in removal of hexavalent chromium by carbon-based materials loaded with nano zero-valent iron[J]. Research of Environmental Sciences,2022,35(3):768-779.
    [16] 孟凡生, 王业耀, 李莉.PRB去除模拟地下水中六价铬的反应特性[J]. 环境工程技术学报,2013,3(2):92-97. doi: 10.3969/j.issn.1674-991X.2013.02.016

    MENG F S, WANG Y Y, LI L. Reactivity characteristics of hexavalent chromium removed by PRB in simulated ground water[J]. Journal of Environmental Engineering Technology,2013,3(2):92-97. doi: 10.3969/j.issn.1674-991X.2013.02.016
    [17] 杨君君, 卢晓霞, 张琪, 等.生物墙对地下水中六价铬的去除效果模拟研究[J]. 环境工程学报,2014,8(11):4568-4574.

    YANG J J, LU X X, ZHANG Q, et al. Simulated laboratory study on effect of removing chromium(Ⅵ) from groundwater using permeable biowall[J]. Chinese Journal of Environmental Engineering,2014,8(11):4568-4574.
    [18] 卢欣, 李淼, 唐翠梅, 等.Fe0 -PRB去除Cr(Ⅵ)反应动力学及影响机制[J]. 环境科学,2016,37(9):3473-3479.

    LU X, LI M, TANG C M, et al. Reaction kinetics and impacting mechanism of Cr(Ⅵ) removal in Fe0-PRB systems[J]. Environmental Science,2016,37(9):3473-3479.
    [19] QU M, CHEN H X, WANG Y, et al. Improved performance and applicability of copper-iron bimetal by sulfidation for Cr(Ⅵ) removal[J]. Chemosphere,2021,281:130820. doi: 10.1016/j.chemosphere.2021.130820
    [20] 朱文会. Cr(Ⅵ)污染地下水修复的PRB填料实验研究[D]. 常州: 常州大学, 2014.
    [21] MONTESINOS V N, QUICI N, HALAC E B, et al. Highly efficient removal of Cr(Ⅵ) from water with nanoparticulated zerovalent iron: understanding the Fe(Ⅲ)-Cr(Ⅲ) passive outer layer structure[J]. Chemical Engineering Journal,2014,244:569-575. doi: 10.1016/j.cej.2014.01.093
    [22] ZHANG B, ZHU B H, WANG X, et al. Nanoscale zero valent iron supported by biomass-activated carbon for highly efficient total chromium removal from electroplating wastewater[J]. Water,2019,12(1):89. doi: 10.3390/w12010089
    [23] MANNING B A, KISER J R, KWON H, et al. Spectroscopic investigation of Cr(Ⅲ)- and Cr(Ⅵ)-treated nanoscale zerovalent iron[J]. Environmental Science & Technology,2007,41(2):586-592.
    [24] JIA Z Z, SHU Y H, HUANG R L, et al. Enhanced reactivity of nZVI embedded into supermacroporous cryogels for highly efficient Cr(Ⅵ) and total Cr removal from aqueous solution[J]. Chemosphere,2018,199:232-242. doi: 10.1016/j.chemosphere.2018.02.021
    [25] ALIDOKHT L, KHATAEE A R, REYHANITABAR A, et al. Reductive removal of Cr(Ⅵ) by starch-stabilized Fe0 nanoparticles in aqueous solution[J]. Desalination,2011,270(1/2/3):105-110. ⊗
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  98
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-15

目录

    /

    返回文章
    返回