留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铜锰型催化剂对低浓度乙醇的催化燃烧性能

杨曦怒 罗兰妮 周敬懿 刘建英 何俊良 卓磊 黎云 于海晨

杨曦怒,罗兰妮,周敬懿,等.铜锰型催化剂对低浓度乙醇的催化燃烧性能[J].环境工程技术学报,2023,13(2):527-533 doi: 10.12153/j.issn.1674-991X.20220193
引用本文: 杨曦怒,罗兰妮,周敬懿,等.铜锰型催化剂对低浓度乙醇的催化燃烧性能[J].环境工程技术学报,2023,13(2):527-533 doi: 10.12153/j.issn.1674-991X.20220193
YANG X N,LUO L N,ZHOU J Y,et al.Catalytic combustion performance of copper manganese catalyst for low concentration ethanol[J].Journal of Environmental Engineering Technology,2023,13(2):527-533 doi: 10.12153/j.issn.1674-991X.20220193
Citation: YANG X N,LUO L N,ZHOU J Y,et al.Catalytic combustion performance of copper manganese catalyst for low concentration ethanol[J].Journal of Environmental Engineering Technology,2023,13(2):527-533 doi: 10.12153/j.issn.1674-991X.20220193

铜锰型催化剂对低浓度乙醇的催化燃烧性能

doi: 10.12153/j.issn.1674-991X.20220193
基金项目: 国家自然科学基金项目(51608061);四川省大学生创新创业训练计划项目(202110621043)
详细信息
    作者简介:

    杨曦怒(1998—),男,硕士研究生,主要从事大气污染控制研究,18781688725@163.com

    通讯作者:

    刘建英(1976—),女,副教授,博士,主要从事大气污染控制与环境催化研究,liujy@cuit.edu.cn

  • 中图分类号: X701

Catalytic combustion performance of copper manganese catalyst for low concentration ethanol

  • 摘要:

    乙醇汽油车尾气中除了传统汽油车的三大常规污染物(CO、NOx和HCs),还含有导致光化学烟雾和臭氧污染的醇醛类非常规有机物。采用共沉淀法制备了CuOx、MnOx和CuMnOx催化剂用于乙醇汽油车冷启动排放的低浓度乙醇的催化燃烧,同时采用氮气吸附脱附技术(BET)、X射线衍射(XRD)、氢气程序升温还原(H2-TPR)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)对催化剂进行了表征。研究表明,CuMnOx催化剂对低浓度乙醇具有较好的低温催化活性;当反应温度为185 ℃时,CO2产率可达86%,优于单一的CuOx催化剂(约20%);同时,CuMnOx比MnOx具有较高的CO2选择性。Cu、Mn之间的相互作用改变了催化剂的织构、结构和氧化性能,引起了催化剂表面晶貌和电子环境的变化,使得CuMnOx催化剂表面具有大量的氧缺陷位,有利于氧分子在其表面的吸附,进而活化成表面活性氧物种。

     

  • 图  1  反应装置流程

    1—氮气钢瓶;2—空气钢瓶;3—乙醇气钢瓶;4—气体质量流量计;5—温控仪;6—混气瓶;7—催化剂;8—固定床反应器;9—气相色谱;10—热电偶;11—程序升温控制仪;12—尾气吸收装置。

    Figure  1.  Flow chart of reaction device

    图  2  催化剂样品的BJH孔径分布

    Figure  2.  BJH pore size distribution of the catalyst samples

    图  3  催化剂样品的N2吸脱附等温线

    Figure  3.  Nitrogen adsorption-desorption isotherms of the catalyst samples

    图  4  催化剂样品的XRD图

    Figure  4.  XRD patterns of the samples

    图  5  催化剂样品的H2-TPR曲线

    Figure  5.  H2-TPR curves of the samples

    图  6  CuOx、MnOx、CuMnOx的SEM图

    Figure  6.  SEM images of CuOx, MnOx, CuMnOx

    图  7  催化剂样品表面O1s 的XPS图

    Figure  7.  XPS spectra of O1s of sample surface

    图  8  乙醇催化燃烧活性测试

    Figure  8.  Test of catalytic combustion performance of catalysts for ethanol

    图  9  CuMnOx催化剂的稳定性测试

    Figure  9.  Stability test of CuMnOx catalyst

    表  1  催化剂样品的织构性能

    Table  1.   Texture properties of the catalyst samples

    样品比表面积/(m2/g)总孔容/(cm3/g)平均孔径/nm
    CuOx180.1628.6
    MnOx790.165.5
    CuMnOx470.187.9
    下载: 导出CSV

    表  2  催化剂样品O1s的XPS数据

    Table  2.   O1s XPS data of the samples

    样品OαOβOα/Oβ
    能带/eV相对含量/%能带/eV相对含量/%
    CuOx531.428.77529.671.230.40
    MnOx531.440.60529.659.400.68
    CuMnOx531.465.46529.934.541.90
    下载: 导出CSV
  • [1] 吴咏玲. 全国机动车保有量突破4亿辆[EB/OL]. (2022-04-07)[2022-05-04]. http://www.news.cn/2022-04/07/c_1128540220.htm.
    [2] 纪亮, 袁盈, 李刚, 等.我国机动车排放标准的大气污染物减排效果研究[J]. 环境工程技术学报,2011,1(3):237-242. doi: 10.3969/j.issn.1674-991X.2011.03.039

    JI L, YUAN Y, LI G, et al. Study on emission reduction effect of motor vehicle emission standards in China[J]. Journal of Environmental Engineering Technology,2011,1(3):237-242. doi: 10.3969/j.issn.1674-991X.2011.03.039
    [3] FANG X, SHEN Y, ZHAO J, et al. Status and prospect of lignocellulosic bioethanol production in China[J]. Bioresource Technology,2010,101(13):4814-4819. doi: 10.1016/j.biortech.2009.11.050
    [4] 能源局.《关于扩大生物燃料乙醇生产和推广使用车用乙醇汽油的实施方案》印发[A/OL]. (2017-09-13)[2022-05-04]. http://www.gov.cn/xinwen/2017-09/13/content_5224735.htm.
    [5] 张涛.《2030年前碳达峰行动方案》解读[J]. 生态经济,2022,38(1):9-12.
    [6] AGARWAL A K, SHUKLA P C, GUPTA J G, et al. Unregulated emissions from a gasohol (E5, E15, M5, and M15) fuelled spark ignition engine[J]. Applied Energy,2015,154:732-741. doi: 10.1016/j.apenergy.2015.05.052
    [7] MORKNOY D, KHUMMONGKOL P, PRUEAKSASIT T. Seasonal and diurnal concentrations of ambient formaldehyde and acetaldehyde in Bangkok[J]. Water, Air, & Soil Pollution,2011,216(1/2/3/4):693-702.
    [8] WANG T, XUE L K, BRIMBLECOMBE P, et al. Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects[J]. Science of the Total Environment,2017,575:1582-1596. doi: 10.1016/j.scitotenv.2016.10.081
    [9] 曹小聪, 吴晓晨, 徐文帅, 等.三亚市大气VOCs污染特征、臭氧生成潜势及来源解析[J]. 环境科学研究,2021,34(8):1812-1824.

    CAO X C, WU X C, XU W S, et al. Pollution characterization, ozone formation potential and source apportionment of ambient VOCs in Sanya, China[J]. Research of Environmental Sciences,2021,34(8):1812-1824.
    [10] SUAREZ-BERTOA R, CLAIROTTE M, ARLITT B, et al. Intercomparison of ethanol, formaldehyde and acetaldehyde measurements from a flex-fuel vehicle exhaust during the WLTC[J]. Fuel,2017,203:330-340. doi: 10.1016/j.fuel.2017.04.131
    [11] 沈岩, 武彤冉, 闫静, 等.基于COPERT模型北京市机动车大气污染物和二氧化碳排放研究[J]. 环境工程技术学报,2021,11(6):1075-1082. doi: 10.12153/j.issn.1674-991X.20210289

    SHEN Y, WU T R, YAN J, et al. Investigation on air pollutants and carbon dioxide emissions from motor vehicles in Beijing based on COPERT model[J]. Journal of Environmental Engineering Technology,2021,11(6):1075-1082. doi: 10.12153/j.issn.1674-991X.20210289
    [12] WESTERMANN A, AZAMBRE B, FINQUENEISEL G, et al. Evolution of unburnt hydrocarbons under “cold-start” conditions from adsorption/desorption to conversion: on the screening of zeolitic materials[J]. Applied Catalysis B:Environmental,2014,158/159:48-59. doi: 10.1016/j.apcatb.2014.04.005
    [13] CLAIROTTE M, ADAM T W, ZARDINI A A, et al. Effects of low temperature on the cold start gaseous emissions from light duty vehicles fuelled by ethanol-blended gasoline[J]. Applied Energy,2013,102:44-54. doi: 10.1016/j.apenergy.2012.08.010
    [14] LIU J Y, ZHAO M, XU C H, et al. Ultrasonic-assisted fabrication and catalytic activity of CeZrAl oxide-supported Pd for the purification of gasohol exhaust[J]. Chinese Journal of Catalysis,2013,34(4):751-757. doi: 10.1016/S1872-2067(11)60488-9
    [15] LIU J Y, ZHAO M, XU C H, et al. Hydrothermal synthesis and catalytic activity of CeZrAl oxide-supported Pd for the purification of gasohol exhaust[J]. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry,2015,45(6):899-905. doi: 10.1080/15533174.2013.843554
    [16] LIU J Y, LI J J, HOU X X, et al. Thermal stabilities of MCM-41-modified Pd/Al2O3 for ethanol adsorption and oxidation[J]. Industrial & Engineering Chemistry Research,2020,59(13):5474-5481.
    [17] HASEGAWA Y I, MAKI R U, SANO M, et al. Preferential oxidation of CO on copper-containing manganese oxides[J]. Applied Catalysis A:General,2009,371(1/2):67-72.
    [18] CHEN H, WANG J H, LI H, et al. Low temperature combustion of ethylene in a carbon dioxide stream over a cordierite monolith-supported Cu-Mn Hopcalite catalyst[J]. Applied Catalysis A:General,2012,427/428:73-78. doi: 10.1016/j.apcata.2012.03.035
    [19] MARINOIU A, RACEANU M, COBZARU C, et al. Low temperature CO retention using hopcalite catalyst for fuel cell applications[J]. Reaction Kinetics, Mechanisms and Catalysis,2014,112(1):37-50. doi: 10.1007/s11144-014-0694-2
    [20] LAMB A B, BRAY W C, FRAZER J C W. The removal of carbon monoxide from air[J]. Journal of Industrial & Engineering Chemistry,1920,12(3):213-221.
    [21] DEY S, DHAL G C, MOHAN D, et al. Application of hopcalite catalyst for controlling carbon monoxide emission at cold-start emission conditions[J]. Journal of Traffic and Transportation Engineering (English Edition),2019,6(5):419-440. doi: 10.1016/j.jtte.2019.06.002
    [22] DEY S, DHAL G C. Synthesis of Hopcalite catalysts by various methods for improved catalytic conversion of carbon monoxide[J]. Materials Science for Energy Technologies,2020,3:377-389. doi: 10.1016/j.mset.2020.02.005
    [23] DEY S, DHAL G C. Deactivation and regeneration of hopcalite catalyst for carbon monoxide oxidation: a review[J]. Materials Today Chemistry,2019,14:100180. doi: 10.1016/j.mtchem.2019.07.002
    [24] SOLSONA B, GARCIA T, AGOURAM S, et al. The effect of gold addition on the catalytic performance of copper manganese oxide catalysts for the total oxidation of propane[J]. Applied Catalysis B:Environmental,2011,101(3/4):388-396.
    [25] SUN M H, HUANG S Z, CHEN L H, et al. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine[J]. Chemical Society Reviews,2016,45(12):3479-3563. doi: 10.1039/C6CS00135A
    [26] AL-FATESH A S, IBRAHIM A A, ALSHAREKH A M, et al. Iron catalyst for decomposition of methane: influence of Al/Si ratio support[J]. Egyptian Journal of Petroleum,2018,27(4):1221-1225. doi: 10.1016/j.ejpe.2018.05.004
    [27] ZHANG S, GUO Y Y, LI X Y, et al. The double peaks and symmetric path phenomena in the catalytic activity of Pd/Al2O3-TiO2 catalysts with different TiO2 contents[J]. Journal of Solid State Chemistry,2018,262:335-342. doi: 10.1016/j.jssc.2018.03.036
    [28] TANG W X, LI W H, LI D Y, et al. Synergistic effects in porous Mn-Co mixed oxide nanorods enhance catalytic deep oxidation of benzene[J]. Catalysis Letters,2014,144(11):1900-1910. doi: 10.1007/s10562-014-1340-3
    [29] LIU C X, GONG L, DAI R Y, et al. Mesoporous Mn promoted Co3O4 oxides as an efficient and stable catalyst for low temperature oxidation of CO[J]. Solid State Sciences,2017,71:69-74. doi: 10.1016/j.solidstatesciences.2017.07.006
    [30] MORALES M R, BARBERO B P, CADÚS L E. Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts[J]. Applied Catalysis B:Environmental,2006,67(3/4):229-236.
    [31] WASKOWSKA A, GERWARD L, STAUN OLSEN J, et al. CuMn2O4: properties and the high-pressure induced Jahn-Teller phase transition[J]. Journal of Physics:Condensed Matter,2001,13(11):2549-2562. doi: 10.1088/0953-8984/13/11/311
    [32] VEPŘEK S, COCKE D L, KEHL S, et al. Mechanism of the deactivation of Hopcalite catalysts studied by XPS, ISS, and other techniques[J]. Journal of Catalysis,1986,100(1):250-263. doi: 10.1016/0021-9517(86)90090-4
    [33] CHEN H, TONG X L, LI Y D. Mesoporous Cu-Mn Hopcalite catalyst and its performance in low temperature ethylene combustion in a carbon dioxide stream[J]. Applied Catalysis A: General,2009,370(1/2):59-65.
    [34] LI Y R, PENG H G, XU X L, et al. Facile preparation of mesoporous Cu-Sn solid solutions as active catalysts for CO oxidation[J]. RSC Advances,2015,5(33):25755-25764. doi: 10.1039/C5RA00635J
    [35] ARENA F, TORRE T, RAIMONDO C, et al. Structure and redox properties of bulk and supported manganese oxide catalysts[J]. Physical Chemistry Chemical Physics,2001,3(10):1911-1917. doi: 10.1039/b100091h
    [36] 朱学诚. 适用于过滤催化复合材料的锰基催化剂低温氧化挥发性有机物的机理研究[D]. 杭州: 浙江大学, 2019.
    [37] YE Z, GIRAUDON J M, NUNS N, et al. Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation[J]. Applied Catalysis B: Environmental,2018,233:154-166. doi: 10.1016/j.apcatb.2017.06.072
    [38] WU Y S, LU Y, SONG C J, et al. A novel redox-precipitation method for the preparation of α-MnO2 with a high surface Mn4+ concentration and its activity toward complete catalytic oxidation of o-xylene[J]. Catalysis Today,2013,201:32-39. doi: 10.1016/j.cattod.2012.04.032
    [39] DU X S, GAO X, QU R Y, et al. The influence of alkali metals on the Ce-Ti mixed oxide catalyst for the selective catalytic reduction of NOx[J]. ChemCatChem,2012,4(12):2075-2081. doi: 10.1002/cctc.201200316
    [40] DU X S, GAO X, CUI L W, et al. Investigation of the effect of Cu addition on the SO2-resistance of a CeTi oxide catalyst for selective catalytic reduction of NO with NH3[J]. Fuel,2012,92(1):49-55. doi: 10.1016/j.fuel.2011.08.014
    [41] WU Y S, ZHANG Y X, LIU M, et al. Complete catalytic oxidation of o-xylene over Mn-Ce oxides prepared using a redox-precipitation method[J]. Catalysis Today,2010,153(3/4):170-175.
    [42] 王幸宜. 催化剂表征[M]. 上海: 华东理工大学出版社, 2008: 204-209.
    [43] DU H W, WANG Y, WAN T, et al. Highly efficient and selective Cu/MnOx catalysts for carbon dioxide reduction[J]. ACS Applied Energy Materials,2018,1(7):3035-3041. doi: 10.1021/acsaem.8b00548
    [44] LI J H, LIANG X, XU S C, et al. Catalytic performance of manganese cobalt oxides on methane combustion at low temperature[J]. Applied Catalysis B:Environmental,2009,90(1/2):307-312.
    [45] KALIYA PERUMAL VEERAPANDIAN S, GIRAUDON J M, de GEYTER N, et al. Regeneration of Hopcalite used for the adsorption plasma catalytic removal of toluene by non-thermal plasma[J]. Journal of Hazardous Materials,2021,402:123877. doi: 10.1016/j.jhazmat.2020.123877
    [46] WU Z B, JIN R B, LIU Y, et al. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature[J]. Catalysis Communications,2008,9(13):2217-2220. doi: 10.1016/j.catcom.2008.05.001
    [47] BIEMELT T, WEGNER K, TEICHERT J, et al. Hopcalite nanoparticle catalysts with high water vapour stability for catalytic oxidation of carbon monoxide[J]. Applied Catalysis B:Environmental,2016,184:208-215. □ doi: 10.1016/j.apcatb.2015.11.008
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  123
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-04

目录

    /

    返回文章
    返回