留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西北生态脆弱区畜禽粪污处理技术综合评价

王颖 王月 吴昌永 范帅 王浩

王颖,王月,吴昌永,等.西北生态脆弱区畜禽粪污处理技术综合评价[J].环境工程技术学报,2023,13(2):654-662 doi: 10.12153/j.issn.1674-991X.20220080
引用本文: 王颖,王月,吴昌永,等.西北生态脆弱区畜禽粪污处理技术综合评价[J].环境工程技术学报,2023,13(2):654-662 doi: 10.12153/j.issn.1674-991X.20220080
WANG Y,WANG Y,WU C Y,et al.Comprehensive evaluation research of livestock and poultry waste treatment technologies in the ecological fragile areas of Northwest China[J].Journal of Environmental Engineering Technology,2023,13(2):654-662 doi: 10.12153/j.issn.1674-991X.20220080
Citation: WANG Y,WANG Y,WU C Y,et al.Comprehensive evaluation research of livestock and poultry waste treatment technologies in the ecological fragile areas of Northwest China[J].Journal of Environmental Engineering Technology,2023,13(2):654-662 doi: 10.12153/j.issn.1674-991X.20220080

西北生态脆弱区畜禽粪污处理技术综合评价

doi: 10.12153/j.issn.1674-991X.20220080
基金项目: 国家重点研发计划项目(2018YFC19037000)
详细信息
    作者简介:

    王颖(1995—),女,硕士研究生,主要从事固体废物污染控制研究,wangy818@126.com

    通讯作者:

    王月(1982—),女,高级工程师,主要从事固体废物污染控制研究,yuewangg@126.com

  • 中图分类号: X713

Comprehensive evaluation research of livestock and poultry waste treatment technologies in the ecological fragile areas of Northwest China

  • 摘要:

    畜禽粪污处理技术在不同地区适用性有较大差异。为全面、客观、科学地筛选出适宜西北地区的畜禽粪污处理技术,将生命周期评价、费用效益评价与层次分析法耦合,从技术、经济、气候、直接环境影响与间接环境影响5个方面,建立了包含18项指标的西北生态脆弱区畜禽粪污处理技术评价体系;以兰州市畜禽粪污处理技术为例,分析好氧堆肥、厌氧发酵、垫料利用3种处理技术的适用性。结果表明:兰州市畜禽粪污处理技术适用性综合排序为垫料利用(72.21分)>好氧堆肥(71.55分)>厌氧发酵(68.79分),垫料利用技术更适宜在西北地区推广;垫料利用技术环境友好性明显优于厌氧发酵和好氧堆肥技术;使用好氧堆肥和厌氧发酵技术处理畜禽粪污可为养殖场增加额外收益。该研究可为西北地区畜禽粪污处理技术模式构建和优化提供指导。

     

  • 图  1  畜禽粪污处理技术筛选基本流程

    Figure  1.  Flow diagram of livestock and poultry waste treatment technology screening

    图  2  3种畜禽粪污处理技术的工作流程

    Figure  2.  Workflow of three livestock and poultry waste treatment technologies

    图  3  畜禽粪污处理技术评价指标体系

    Figure  3.  Index evaluation system of livestock and poultry waste treatment technology

    图  4  3种技术粪污处理量与单位(年)处理量成本及效益关系

    Figure  4.  Relationship between the amount of waste treatment and annual cost and benefit per unit treatment amount of 3 technologies

    图  5  畜禽粪污处理技术适用性综合得分

    Figure  5.  Comprehensive score of applicability of livestock and poultry waste treatment technologies

    表  1  单位耗电量污染物排放量

    Table  1.   Electric pollutant emissions per 1 kW·h consumed kg/(kW·h) 

    CO2CH4NOxCOSO2
    1.072.60×10−36.46×10−31.55×10−39.93×10−3
    下载: 导出CSV

    表  2  3种畜禽粪污处理技术生命周期清单分析结果

    Table  2.   Analysis results of life cycle inventory of three livestock and poultry waste treatment technologies kg/FU 

    技术处理环节排放方式CO2CH4NOxCOSO2N2ONH3CODNH3-NTP
    好氧堆肥堆肥阶段直接排放78.1003.8000.1473.260
    间接排放3.3490.0080.0200.0050.031
    翻堆阶段直接排放
    间接排放3.2100.0080.0190.0050.030
    废水处理阶段直接排放45.2000.0130.2400.1300.013
    间接排放
    合计129.8593.8290.0390.0100.0610.1473.2600.2400.1300.013
    厌氧发酵厌氧发酵阶段直接排放5.2313.509
    间接排放23.6040.0570.1430.0340.219
    沼气发电阶段直接排放96.498
    间接排放
    沼液、沼渣处理阶段直接排放148.9860.0030.0090.0020.0120.0011.2470.4090.061
    间接排放106.8720.2600.6450.1550.992
    合计381.1913.8290.7970.1911.2230.0011.2470.4090.061
    垫料利用垫料利用设备运行直接排放
    间接排放6.9120.0170.0420.0100.064
    高温发酵阶段直接排放3.4800.004
    间接排放
    垫料储存阶段直接排放11.4100.1010.005
    间接排放
    废水处理阶段直接排放19.3960.2010.1090.011
    间接排放
    合计41.1980.1220.0420.010.0640.0050.2010.1090.011
    下载: 导出CSV

    表  3  3种畜禽粪污处理技术生命周期过程的标准化数值及加权评估值

    Table  3.   Standardized value and weighted evaluation value of life cycle process of three livestock and poultry waste treatment technologies

    技术环境影响类型标准化数值加权评估值环境总影响
    好氧堆肥全球变暖0.0310.0260.189
    环境酸化0.1780.130
    富营养化0.0210.015
    光化学臭氧合成0.0340.018
    厌氧发酵全球变暖0.0550.0450.149
    环境酸化0.0510.037
    富营养化8.29×10−36.05×10−3
    光化学臭氧合成0.1140.061
    垫料利用全球变暖3.03×10−34.36×10−30.010
    环境酸化2.66×10−31.94×10−3
    富营养化4.92×10−41.10×10−3
    光化学臭氧合成5.26×10−32.79×10−3
    下载: 导出CSV

    表  4  目标层(A)与准则层(B1~B5)判断矩阵

    Table  4.   Judgment matrix about target layer (A) and criterion layer (B1-B5)

    AB1B2B3B4B5WilmaxCR
    B111/251/220.2035.1780.032
    B22141/220.252
    B31/51/411/51/40.051
    B4225120.346
    B51/21/241/210.148
    下载: 导出CSV

    表  5  准则层(B1)与指标层(C11~C13)判断矩阵

    Table  5.   Judgment matrix about criterion layer (B1) and index layer (C11-C13)

    B1C11C12C13WilmaxCR
    C111240.5323.0950.054
    C121/2150.366
    C131/41/510.102
    下载: 导出CSV

    表  6  准则层(B2)与指标层(C21~C23)判断矩阵

    Table  6.   Judgment matrix about criterion layer (B2) and index layer (C21-C23)

    B2C21C22C23WilmaxCR
    C211420.5223.1370.079
    C221/411/60.095
    C231/2610.382
    下载: 导出CSV

    表  7  准则层(B3)与指标层(C31~C33)判断矩阵

    Table  7.   Judgment matrix about criterion layer (B3) and index layer (C31-C33)

    B3C31C32C33WilmaxCR
    C311220.4783.1360.078
    C321/211/30.172
    C331/2310.350
    下载: 导出CSV

    表  8  准则层(B4)与指标层(C41~C45)判断矩阵

    Table  8.   Judgment matrix about criterion layer (B4) and index layer (C41-C45)

    B4C41C42C43C44C45WilmaxCR
    C41132370.3825.4780.085
    C421/313360.265
    C431/21/31380.204
    C441/31/31/3160.116
    C451/71/61/81/610.034
    下载: 导出CSV

    表  9  准则层(B5)与指标层(C51~C54)判断矩阵

    Table  9.   Judgment matrix about criterion layer (B5) and index layer (C51-C54)

    B5C51C52C53C54WilmaxCR
    C5111/521/30.1124.0790.022
    C5251630.558
    C531/21/611/40.071
    C5431/3410.259
    下载: 导出CSV

    表  10  指标层(C)总排序结果

    Table  10.   Total ranking result of index layer (C)

    目标层准则层准则层权重指标层指标层权重综合权重综合排序
    西北生态脆弱区畜禽粪污处理
    技术评价(A
    技术因素(B10.203机械化程度(C110.5320.1083
    操作复杂程度(C120.3660.0747
    占地面积(C130.1020.02113
    经济因素(B20.252单位(年)处理量投资(C210.5220.1312
    处理周期(C220.0950.02412
    单位(年)处理量效益(C230.3820.0964
    气候因素(B30.051常年风向(C310.4780.02411
    年均降水量(C320.1720.00918
    年均气温(C330.3500.01814
    直接环境影响因素(B40.346水环境影响程度(C410.3820.1321
    土壤环境影响程度(C420.2650.0925
    大气环境影响程度(C430.2040.0718
    环境风险程度(C440.1160.0409
    生态影响程度(C450.0340.01316
    间接环境影响因素(B50.148全球变暖(C510.1120.01715
    环境酸化(C520.5580.0836
    富营养化(C530.0710.01117
    光化学臭氧合成(C540.2590.03810
    下载: 导出CSV

    表  11  西北生态脆弱区畜禽粪污处理技术适用性评价赋值

    Table  11.   Assignment of applicability evaluation of livestock and poultry waste treatment technologies in ecological fragile areas of Northwest China

    指标层20分40分60分80分100分
    机械化程度(C11人工以人工为主半自动以机械化设备为主全自动
    操作复杂程度(C12复杂较复杂一般较简单简单
    占地面积(C13)/hm2>31.5~31~1.50.5~1<0.5
    单位(年)处理量投资(C21)/(元/m3)>4030~4020~3010~20<10
    处理周期(C22)/d>2015~2010~155~10<5
    单位(年)处理量效益(C23)/(元/m3)<1515~2020~2525~30>30
    常年风向(C31位于主导风向上风向且风频高于10%位于主导风向上风向且风频低于10%全年平均风速低于
    1 m/s
    位于主导风向下风向且风频低于10%位于主导风向下风向且风频高于10%
    年均降水量(C32)/mm>1 6001 200~1 600800~1 200400~800<400
    年平均气温(C33)/℃<00~55~1010~15>15
    水环境影响程度(C41一级评价二级评价三级评价仅做简要说明
    土壤环境影响程度(C42一级评价二级评价三级评价仅做简要说明
    大气环境敏感程度(C43一级评价二级评价三级评价仅做简要说明
    环境风险(C44一级评价二级评价三级评价仅做简要说明
    生态影响程度(C45一级评价二级评价三级评价仅做简要说明
    全球变暖(C51环境影响潜值高于0.09环境影响潜值为0.06~0.09环境影响潜值为0.03~0.06环境影响潜值为0.01~0.03环境影响潜值低于0.01
    环境酸化(C52环境影响潜值高于0.09环境影响潜值为0.06~0.09环境影响潜值为0.03~0.06环境影响潜值为0.01~0.03环境影响潜值低于0.01
    富营养化(C53环境影响潜值高于0.09环境影响潜值为0.06~0.09环境影响潜值为0.03~0.06环境影响潜值为0.01~0.03环境影响潜值低于0.01
    光化学臭氧合成(C54环境影响潜值高于0.09环境影响潜值为0.06~0.09环境影响潜值为0.03~0.06环境影响潜值为0.01~0.03环境影响潜值低于0.01
    下载: 导出CSV

    表  12  3种畜禽粪污处理技术成本及效益分析

    Table  12.   Cost and benefit analysis of three livestock and poultry waste treatment technologies

    技术养殖场规
    模/头(猪)
    粪污处理量/
    (万m3/a)
    主要产物成本/(万元/a)效益/(万元/a)
    有机
    肥/(t/a)
    沼气/
    (万m3/a)
    沼液、沼渣/(t/a)垫料/
    (万m3/a)
    建设
    投资
    人员
    工费
    水、电及物料费合计有机肥沼气
    发电
    沼液、沼渣
    还田
    垫料
    利用
    合计
    好氧
    堆肥
    15 0000.58180.2924.84.4811.2812.612.6
    厌氧
    发酵
    100 00018.25103.584 50083.872277.61 433.41191.29315506.29
    垫料
    利用
    100 00011.757.5137.9848253.34339.32262.89262.89
    下载: 导出CSV

    表  13  3种畜禽粪污处理技术的指标参数得分

    Table  13.   Index parameter score of three livestock and poultry waste treatment technologies

    技术C11C12C13C21C22C23C31C32C33C41C42C43C44C45C51C52C53C54
    好氧堆肥80806080606080100608080601008080208080
    厌氧发酵10040806080804080608060608080606010040
    垫料利用806020604060801006080606010080100100100100
    下载: 导出CSV
  • [1] 程东林, 陈英, 乔蕻强, 等.西北生态脆弱区城市土地生态安全时序性评价: 以兰州市为例[J]. 中国国土资源经济,2020,33(7):83-89.

    CHENG D L, CHEN Y, QIAO H Q, et al. Time series evaluation of urban land eco-security in eco-vulnerable areas of northwest China: a case study of Lanzhou[J]. Natural Resource Economics of China,2020,33(7):83-89.
    [2] LI F, CHENG S K, YU H L, et al. Waste from livestock and poultry breeding and its potential assessment of biogas energy in rural China[J]. Journal of Cleaner Production,2016,126:451-460. doi: 10.1016/j.jclepro.2016.02.104
    [3] WANG M L, LIU R H, LU X Y, et al. Heavy metal contamination and ecological risk assessment of swine manure irrigated vegetable soils in Jiangxi Province, China[J]. Bulletin of Environmental Contamination and Toxicology,2018,100(5):634-640. doi: 10.1007/s00128-018-2315-7
    [4] 生态环境部, 国家统计局, 农业农村部. 第二次全国污染源普查公报[A/OL]. (2020-06-08)[2021-08-08]. https://www.mee.gov.cn/home/ztbd/rdzl/wrypc/zlxz/202006/t20200616_784745.html.
    [5] ALI RAJAEIFAR M, GHANAVATI H, DASHTI B B, et al. Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: a comparative review[J]. Renewable and Sustainable Energy Reviews,2017,79:414-439. doi: 10.1016/j.rser.2017.04.109
    [6] 李红娜, 吴华山, 耿兵, 等.我国畜禽养殖污染防治瓶颈问题及对策建议[J]. 环境工程技术学报,2020,10(2):167-172.

    LI H N, WU H S, GENG B, et al. The bottleneck and countermeasures in the pollution control of livestock and poultry breeding in China[J]. Journal of Environmental Engineering Technology,2020,10(2):167-172.
    [7] 罗娟, 赵立欣, 姚宗路, 等.规模化养殖场畜禽粪污处理综合评价指标体系构建与应用[J]. 农业工程学报,2020,36(17):182-189.

    LUO J, ZHAO L X, YAO Z L, et al. Construction and application of comprehensive evaluation index system for waste treatment on intensive livestock farms[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(17):182-189.
    [8] 向欣, 罗煜, 程红胜, 等.基于层次分析法和模糊综合评价的沼气工程技术筛选[J]. 农业工程学报,2014,30(18):205-212.

    XIANG X, LUO Y, CHENG H S, et al. Biogas engineering technology screening based on analytic hierarchy process and fuzzy comprehensive evaluation[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(18):205-212.
    [9] GARBS M, GELDERMANN J. Analysis of selected economic and environmental impacts of long distance manure transports to biogas plants[J]. Biomass and Bioenergy,2018,109:71-84. doi: 10.1016/j.biombioe.2017.12.009
    [10] RUIZ D, SAN MIGUEL G, CORONA B, et al. Environmental and economic analysis of power generation in a thermophilic biogas plant[J]. Science of the Total Environment,2018,633:1418-1428. doi: 10.1016/j.scitotenv.2018.03.169
    [11] 陈励芳, 赵希智, 朱旭鑫.金昌市、武威市和兰州市畜禽养殖粪污资源化利用现状调研报告[J]. 甘肃畜牧兽医,2017,47(11):48-50.

    CHEN L F, ZHAO X Z, ZHU X X. Investigation report on the present situation of resource utilization of livestock and poultry manure in Jinchang, Wuwei and Lanzhou[J]. Gansu Animal Husbandry and Veterinary,2017,47(11):48-50.
    [12] 罗长健.畜禽粪便好氧堆肥处理技术探讨[J]. 河南农业,2019(18):46-47.

    LUO C J. Discussion on aerobic composting treatment technology of livestock manure[J]. Agriculture of Henan,2019(18):46-47.
    [13] 裴忠良. 集约化猪场粪便处理的生命周期评价[D]. 哈尔滨: 东北农业大学, 2012.
    [14] 曾雅琼, 施正香, 王盼柳.牛粪垫料再生系统温室气体排放及其对环境的影响[J]. 中国农业大学学报,2018,23(7):66-74.

    ZENG Y Q, SHI Z X, WANG P L. Research on greenhouse gas emissions of bedding recovery unit system and its impact on environment[J]. Journal of China Agricultural University,2018,23(7):66-74.
    [15] MAEDA K, HANAJIMA D, MORIOKA R, et al. Mitigation of greenhouse gas emission from the cattle manure composting process by use of a bulking agent[J]. Soil Science and Plant Nutrition,2013,59(1):96-106. doi: 10.1080/00380768.2012.733868
    [16] LIU J S, XIE Z B, LIU G, et al. A holistic evaluation of CO2 equivalent greenhouse gas emissions from compost reactors with aeration and calcium superphosphate addition[J]. Journal of Resources and Ecology, 2010, 25: 177-185.
    [17] van der WERF H M G, PETIT J, SANDERS J. The environmental impacts of the production of concentrated feed: the case of pig feed in Bretagne[J]. Agricultural Systems,2005,83(2):153-177. doi: 10.1016/j.agsy.2004.03.005
    [18] 代小蓉. 集约化猪场NH3的排放系数研究[D]. 杭州: 浙江大学, 2010.
    [19] 夏湘勤, 席北斗, 黄彩红, 等.畜禽粪便堆肥臭气控制研究进展[J]. 环境工程技术学报,2019,9(6):649-657. doi: 10.12153/j.issn.1674-991X.2019.05.142

    XIA X Q, XI B D, HUANG C H, et al. Review on odor control of livestock and poultry manure composting[J]. Journal of Environmental Engineering Technology,2019,9(6):649-657. doi: 10.12153/j.issn.1674-991X.2019.05.142
    [20] 张颖, 夏训峰, 李中和, 等.规模化养牛场粪便处理生命周期评价[J]. 农业环境科学学报,2010,29(7):1423-1427.

    ZHANG Y, XIA X F, LI Z H, et al. Life cycle assessment of manure treatment in scaled cattle farms[J]. Journal of Agro-Environment Science,2010,29(7):1423-1427.
    [21] 张颖,夏训峰,周素霞, 等.规模化养猪场生命周期环境影响评价[J]. 环境工程技术学报,2012,2(5):428-432.

    ZHANG Y,XIA X F,ZHOU S X, et al. Life cycle assessment of large-scale piggery for environmental assessment[J]. Journal of Environmental Engineering Technology,2012,2(5):428-432.
    [22] 梁勤爽. 模拟畜禽粪便直接还田对氮磷的释放[D]. 重庆: 西南大学, 2009.
    [23] 段雪琴. 集约化奶牛养殖场粪污管理系统的环境影响生命周期评价[D]. 杨凌: 西北农林科技大学, 2018.
    [24] 梁龙, 陈源泉, 高旺盛.我国农业生命周期评价框架探索及其应用: 以河北栾城冬小麦为例[J]. 中国人口·资源与环境,2009,19(5):154-160.

    LIANG L, CHEN Y Q, GAO W S. Framework study and application of agricultural life cycle assessment in China: a case study of winter wheat production in Luancheng of Hebei[J]. China Population Resources and Environment,2009,19(5):154-160.
    [25] CASTANHEIRA É G, DIAS A C, ARROJA L, et al. The environmental performance of milk production on a typical Portuguese dairy farm[J]. Agricultural Systems,2010,103(7):498-507. doi: 10.1016/j.agsy.2010.05.004
    [26] HUIJBREGTS M A J, THISSEN U, GUINÉE J B, et al. Priority assessment of toxic substances in life cycle assessment. Part I: calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES-LCA[J]. Chemosphere,2000,41(4):541-573. doi: 10.1016/S0045-6535(00)00030-8
    [27] 李云燕, 葛畅.环境费用效益分析: 理论、应用与展望[J]. 环境保护与循环经济,2016,36(9):29-34. doi: 10.3969/j.issn.1674-1021.2016.09.010

    LI Y Y, GE C. Analysis of environmental cost and benefit: theory, application and prospect[J]. Environmental Protection and Circular Economy,2016,36(9):29-34. doi: 10.3969/j.issn.1674-1021.2016.09.010
    [28] 连海明. 规模化养猪场粪污处理的成本与效益分析[D]. 北京: 中国农业科学院, 2010.
    [29] MARTINEZ-SANCHEZ V, KROMANN M A, ASTRUP T F. Life cycle costing of waste management systems: overview, calculation principles and case studies[J]. Waste Management,2015,36:343-355. doi: 10.1016/j.wasman.2014.10.033
    [30] YANG L L, XIAO X, GU K. Agricultural waste recycling optimization of family farms based on environmental management accounting in rural China[J]. Sustainability,2021,13(10):5515. doi: 10.3390/su13105515
    [31] 李艳苓, 朱昌雄, 李红娜, 等.基于层次分析法的农业面源污染防治技术评价[J]. 环境工程技术学报,2019,9(4):355-361.

    LI Y L, ZHU C X, LI H N, et al. Evaluation of agricultural non-point source pollution control technologies based on analytic hierarchy process[J]. Journal of Environmental Engineering Technology,2019,9(4):355-361.
    [32] 李梁, 曹欣然, 庞燕, 等.洱海流域农村生活污水治理技术评价[J]. 环境工程技术学报,2019,9(4):349-354.

    LI L, CAO X R, PANG Y, et al. Evaluation of rural domestic wastewater treatment technologies in Lake Erhai Basin[J]. Journal of Environmental Engineering Technology,2019,9(4):349-354.
    [33] 韩旭, 生贺, 夏甫, 等.危险废物填埋场地下水污染风险评价中指标权重计算方法优化比选[J]. 环境科学研究,2021,34(6):1378-1386.

    HAN X, SHENG H, XIA F, et al. Optimized comparison and selection of index weight calculation methods in hazardous waste landfill site groundwater pollution risk assessment[J]. Research of Environmental Sciences,2021,34(6):1378-1386.
    [34] 李艳萍, 乔琦, 柴发合, 等.基于层次分析法的工业园区环境风险评价指标权重分析[J]. 环境科学研究,2014,27(3):334-340.

    LI Y P, QIAO Q, CHAI F H, et al. Study on environmental risk assessment index weight of industrial park based on the analytic hierarchy process[J]. Research of Environmental Sciences,2014,27(3):334-340.
    [35] 田羽, 方刚, 周长波, 等.我国橡胶制品行业VOCs末端减排技术评估[J]. 环境工程技术学报,2021,11(4):797-806.

    TIAN Y, FANG G, ZHOU C B, et al. Evaluation on VOCs terminal emission reduction technologies in rubber products industry in China[J]. Journal of Environmental Engineering Technology,2021,11(4):797-806.
    [36] 王月, 王劢博, 杨悦, 等.西北生态脆弱区城市生活垃圾处理厂适用性评价[J]. 中国环境科学,2021,41(12):5933-5942. doi: 10.3969/j.issn.1000-6923.2021.12.050

    WANG Y, WANG M B, YANG Y, et al. The optimization of municipal solid waste treatment technology in the ecological fragile areas of northwest China[J]. China Environmental Science,2021,41(12):5933-5942. doi: 10.3969/j.issn.1000-6923.2021.12.050
    [37] PUBULE J, BLUMBERGA D. Impact assessment of biogas projects in Latvia[J]. International Journal of Sustainable Development and Planning,2014,9(2):251-262. doi: 10.2495/SDP-V9-N2-251-262
    [38] 问鑫.规模化猪场不同粪污处理的机理及经济分析[J]. 湖南饲料,2017(6):33-38.

    WEN X. Mechanism and economic analysis of different manure treatment in large-scale pig farms[J]. Hunan Feed,2017(6):33-38. ◇
  • 加载中
图(5) / 表(13)
计量
  • 文章访问数:  176
  • HTML全文浏览量:  130
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-24

目录

    /

    返回文章
    返回