留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同阳极设置对人工湿地-微生物燃料电池脱氮及产能的影响

李朝明 许丹 黄铭意 唐顺静 韩胡威

李朝明,许丹,黄铭意,等.不同阳极设置对人工湿地-微生物燃料电池脱氮及产能的影响[J].环境工程技术学报,2023,13(1):205-213 doi: 10.12153/j.issn.1674-991X.20220048
引用本文: 李朝明,许丹,黄铭意,等.不同阳极设置对人工湿地-微生物燃料电池脱氮及产能的影响[J].环境工程技术学报,2023,13(1):205-213 doi: 10.12153/j.issn.1674-991X.20220048
LI C M,XU D,HUANG M Y,et al.Effects of different anode settings on the performance of nitrogen removal and electrogenesis capacity in constructed wetland-microbial fuel cells[J].Journal of Environmental Engineering Technology,2023,13(1):205-213 doi: 10.12153/j.issn.1674-991X.20220048
Citation: LI C M,XU D,HUANG M Y,et al.Effects of different anode settings on the performance of nitrogen removal and electrogenesis capacity in constructed wetland-microbial fuel cells[J].Journal of Environmental Engineering Technology,2023,13(1):205-213 doi: 10.12153/j.issn.1674-991X.20220048

不同阳极设置对人工湿地-微生物燃料电池脱氮及产能的影响

doi: 10.12153/j.issn.1674-991X.20220048
基金项目: 江西省自然科学基金项目(20192BAB213021)
详细信息
    作者简介:

    李朝明(1982—),男,讲师,硕士,主要从事水及污水处理技术理论研究,cmli@ecut.edu.cn

  • 中图分类号: X703

Effects of different anode settings on the performance of nitrogen removal and electrogenesis capacity in constructed wetland-microbial fuel cells

  • 摘要:

    人工湿地-微生物燃料电池(constructed wetland-microbial fuel cell, CW-MFC)耦合系统是人工湿地和生物电化学技术的有机结合,其中阳极是限制耦合系统输出功率和污染物净化性能的关键因素。构建了未加入颗粒活性炭(CW-MFC1)和加入颗粒活性炭(CW-MFC2)2套耦合系统以探讨阳极加入颗粒活性炭对耦合系统产电和脱氮性能的影响,并利用高通量测序技术对比分析2套系统阳极和阴极微生物群落组成。结果表明:CW-MFC2耦合系统的输出电压和最大功率密度(430 mV,8.39 mW/m2)高于CW-MFC1(379 mV,7.77 mW/m2)。试验运行前期(0 ~29 d),CW-MFC2耦合系统的氨氮去除率为65.72%±3.06%,显著高于CW-MFC1(56.06%±3.71%),而二者的总氮去除率相差不大;随着时间的推移(30 ~105 d),CW-MFC1耦合系统的氨氮和总氮去除率逐渐高于CW-MFC2,尤其是总氮去除更为显著(CW-MFC1为42.69%±4.19%,CW-MFC2为32.50%±11.51%)。高通量测序结果表明,CW-MFC1阳极富集的不动杆菌属以及阴极大量的反硝化菌(巨大芽殖杆菌属、地杆菌属、黄杆菌属、不动杆菌属和脱氯单胞菌属等)的富集可能是其脱氮性能优于CW-MFC2的主要原因。综上,阳极加入颗粒活性炭可提升CW-MFC耦合系统的产电性能,但不利于生物脱氮过程。

     

  • 图  1  CW-MFC耦合系统试验装置示意

    注:尺寸数字的单位为cm。

    Figure  1.  Schematic diagram of CW-MFC coupled system test devices

    图  2  CW-MFC耦合系统外电路电压、功率密度曲线和极化曲线

    Figure  2.  Output voltage, power density curve, and polarization curve of CW-MFC coupling system

    图  3  CW-MFC耦合系统出水污染物浓度及其去除率

    Figure  3.  Pollutant effluent concentrations and removal efficiencies of CW-MFC coupling system

    图  4  CW-MFC耦合系统出水温度

    Figure  4.  Effluent temperature of CW-MFC coupling system

    图  5  CW-MFC耦合系统电极门和属水平上微生物的相对丰度

    Figure  5.  Relative abundances of microorganisms at the phylum and genus levels in the electrodes of CW-MFC coupling system

  • [1] LOGAN B E, RABAEY K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies[J]. Science,2012,337(6095):686-690. doi: 10.1126/science.1217412
    [2] KUMAR G G, SARATHI V G S, NAHM K S. Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells[J]. Biosensors and Bioelectronics,2013,43:461-475. doi: 10.1016/j.bios.2012.12.048
    [3] LEOPOLD HEYDORN R, ENGEL C, KRULL R, et al. Strategies for the targeted improvement of anodic electron transfer in microbial fuel cells[J]. ChemBioEng Reviews,2020,7(1):4-17. doi: 10.1002/cben.201900023
    [4] XU G H, WANG Y K, SHENG G P, et al. An MFC-based online monitoring and alert system for activated sludge process[J]. Scientific Reports,2014,4:6779.
    [5] HOU B, LIU X Y, ZHANG R, et al. Investigation and evaluation of membrane fouling in a microbial fuel cell-membrane bioreactor systems (MFC-MBR)[J]. Science of the Total Environment,2022,814:152569. doi: 10.1016/j.scitotenv.2021.152569
    [6] YANG Y, ZHAO Y Q, TANG C, et al. Role of macrophyte species in constructed wetland-microbial fuel cell for simultaneous wastewater treatment and bioenergy generation[J]. Chemical Engineering Journal,2020,392:123708. doi: 10.1016/j.cej.2019.123708
    [7] WU D, YANG L Y, GAN L, et al. Potential of novel wastewater treatment system featuring microbial fuel cell to generate electricity and remove pollutants[J]. Ecological Engineering,2015,84:624-631. doi: 10.1016/j.ecoleng.2015.09.068
    [8] XU D, XIAO E R, XU P, et al. Effects of influent organic loading rates and electrode locations on the electrogenesis capacity of constructed wetland-microbial fuel cell systems[J]. Environmental Progress & Sustainable Energy,2017,36(2):435-441.
    [9] SRIVASTAVA P, YADAV A K, MISHRA B K. The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland[J]. Bioresource Technology,2015,195:223-230. doi: 10.1016/j.biortech.2015.05.072
    [10] TIMMERS R A, STRIK D P B T B, HAMELERS H V M, et al. Characterization of the internal resistance of a plant microbial fuel cell[J]. Electrochimica Acta,2012,72:165-171. doi: 10.1016/j.electacta.2012.04.023
    [11] 王海燕, 赵远哲, 王文富, 等.人工湿地脱氮影响因素及强化措施研究进展[J]. 环境工程技术学报,2020,10(4):585-597. doi: 10.12153/j.issn.1674-991X.20190150

    WANG H Y, ZHAO Y Z, WANG W F, et al. A review of influencing factors and enhanced measures for nitrogen removal of constructed wetlands[J]. Journal of Environmental Engineering Technology,2020,10(4):585-597. doi: 10.12153/j.issn.1674-991X.20190150
    [12] LI H F, LIU F, LUO P, et al. Stimulation of optimized influent C: N ratios on nitrogen removal in surface flow constructed wetlands: performance and microbial mechanisms[J]. Science of the Total Environment,2019,694:133575. doi: 10.1016/j.scitotenv.2019.07.381
    [13] ODEDISHEMI AJIBADE F, WANG H C, GUADIE A, et al. Total nitrogen removal in biochar amended non-aerated vertical flow constructed wetlands for secondary wastewater effluent with low C/N ratio: microbial community structure and dissolved organic carbon release conditions[J]. Bioresource Technology,2021,322:124430. doi: 10.1016/j.biortech.2020.124430
    [14] JADHAV G S, GHANGREKAR M M. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration[J]. Bioresource Technology,2009,100(2):717-723. doi: 10.1016/j.biortech.2008.07.041
    [15] XU L, ZHAO Y Q, WANG X D, et al. Applying multiple bio-cathodes in constructed wetland-microbial fuel cell for promoting energy production and bioelectrical derived nitrification-denitrification process[J]. Chemical Engineering Journal,2018,344:105-113. doi: 10.1016/j.cej.2018.03.065
    [16] COBAN O, KUSCHK P, KAPPELMEYER U, et al. Nitrogen transforming community in a horizontal subsurface-flow constructed wetland[J]. Water Research,2015,74:203-212. doi: 10.1016/j.watres.2015.02.018
    [17] 侯俊青, 赵吉, 李佳, 等.自然生境中厌氧氨氧化功能微生物生态学研究进展[J]. 环境科学研究,2019,32(12):1984-1992. doi: 10.13198/j.issn.1001-6929.2019.03.23

    HOU J Q, ZHAO J, LI J, et al. Current insight on microbial ecology of anaerobic ammonium oxidation in natural environment[J]. Research of Environmental Sciences,2019,32(12):1984-1992. doi: 10.13198/j.issn.1001-6929.2019.03.23
    [18] INOUE J I, OSHIMA K, SUDA W, et al. Distribution and evolution of nitrogen fixation genes in the Phylum Bacteroidetes[J]. Microbes and Environments,2015,30(1):44-50. doi: 10.1264/jsme2.ME14142
    [19] CHENG C, SUN T Y, LI H J, et al. New insights in correlating greenhouse gas emissions and microbial carbon and nitrogen transformations in wetland sediments based on genomic and functional analysis[J]. Journal of Environmental Management,2021,297:113280. doi: 10.1016/j.jenvman.2021.113280
    [20] 姚倩, 彭党聪, 赵俏迪, 等.活性污泥中硝化螺菌(Nitrospira)的富集及其动力学参数[J]. 环境科学,2017,38(12):5201-5207.

    YAO Q, PENG D C, ZHAO Q D, et al. Enrichment of Nitrospira in activated sludge and kinetic characterization[J]. Environmental Science,2017,38(12):5201-5207.
    [21] CAI W, LI Y, NIU L H, et al. New insights into the spatial variability of biofilm communities and potentially negative bacterial groups in hydraulic concrete structures[J]. Water Research,2017,123:495-504. doi: 10.1016/j.watres.2017.06.055
    [22] WANG C, LIU S Y, ZHANG Y, et al. Bacterial communities and their predicted functions explain the sediment nitrogen changes along with submerged macrophyte restoration[J]. Microbial Ecology,2018,76(3):625-636. doi: 10.1007/s00248-018-1166-4
    [23] PAITIER A, GODAIN A, LYON D, et al. Microbial fuel cell anodic microbial population dynamics during MFC start-up[J]. Biosensors and Bioelectronics,2017,92:357-363. doi: 10.1016/j.bios.2016.10.096
    [24] 王思宇, 李军, 王秀杰, 等.添加芽孢杆菌污泥反硝化特性及菌群结构分析[J]. 中国环境科学,2017,37(12):4649-4656. doi: 10.3969/j.issn.1000-6923.2017.12.030

    WANG S Y, LI J, WANG X J, et al. Denitrification characteristics of Bacillus subtilis sludge and analysis of microbial community structure[J]. China Environmental Science,2017,37(12):4649-4656. doi: 10.3969/j.issn.1000-6923.2017.12.030
    [25] MIKES M C, MARTIN T K, MOE W M. Azospira inquinata sp. nov. , a nitrate-reducing bacterium of the family Rhodocyclaceae isolated from contaminated groundwater[J/OL]. International Journal of Systematic and Evolutionary Microbiology, 2021.doi: 10.1099/ijsem.0.005172.
    [26] LI Z, LI L, SUN H Y, et al. Ammonia assimilation: a double-edged sword influencing denitrification of Rhodobacter azotoformans and for nitrogen removal of aquaculture wastewater[J]. Bioresource Technology,2022,345:126495. doi: 10.1016/j.biortech.2021.126495
    [27] WANG J F, SONG X S, WANG Y H, et al. Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophytes[J]. Science of the Total Environment,2017,607/608:53-62. doi: 10.1016/j.scitotenv.2017.06.243
    [28] 王义安, 张学洪, 郑君健, 等.不同基质碳源下人工湿地微生物燃料电池的电化学性能及微生物群落结构[J]. 环境工程学报,2021,15(11):3696-3706. doi: 10.12030/j.cjee.202108060

    WANG Y A, ZHANG X H, ZHENG J J, et al. Electrochemical properties and microbial community structure of constructed wetland microbial fuel cell under different matrix carbon source[J]. Chinese Journal of Environmental Engineering,2021,15(11):3696-3706. doi: 10.12030/j.cjee.202108060
    [29] COATES J D, CHAKRABORTY R, LACK J G, et al. Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas[J]. Nature,2001,411(6841):1039-1043. doi: 10.1038/35082545
    [30] HOSONO T, ALVAREZ K, LIN I T, et al. Nitrogen, carbon, and sulfur isotopic change during heterotrophic (Pseudomonas aureofaciens) and autotrophic (Thiobacillus denitrificans) denitrification reactions[J]. Journal of Contaminant Hydrology,2015,183:72-81. doi: 10.1016/j.jconhyd.2015.10.009
    [31] SZEKERES S, KISS I, KALMAN M, et al. Microbial population in a hydrogen-dependent denitrification reactor[J]. Water Research,2002,36(16):4088-4094. doi: 10.1016/S0043-1354(02)00130-6
    [32] DU L, TRINH X, CHEN Q R, et al. Enhancement of microbial nitrogen removal pathway by vegetation in Integrated Vertical-Flow Constructed Wetlands (IVCWs) for treating reclaimed water[J]. Bioresource Technology,2018,249:644-651. doi: 10.1016/j.biortech.2017.10.074
    [33] SPIELES D J, MITSCH W J. The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands: a comparison of low- and high-nutrient riverine systems[J]. Ecological Engineering,1999,14(1/2):77-91.
    [34] XU D, LIN L L, XU P, et al. Effect of drained-flooded time ratio on ammonia nitrogen removal in a constructed wetland-microbial fuel cell system by tidal flow operation[J]. Journal of Water Process Engineering,2021,44:102450. doi: 10.1016/j.jwpe.2021.102450
    [35] BONANNI P S, DAVID SCHROTT G, BUSALMEN J P. A long way to the electrode: how do Geobacter cells transport their electrons[J]. Biochemical Society Transactions,2012,40(6):1274-1279. ◇ doi: 10.1042/BST20120046
  • 加载中
图(5)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  97
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-17

目录

    /

    返回文章
    返回