留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三峡水库补水调度对东洞庭湖典型沉水植物生境适宜性的影响

吴倩 戴凌全 任玉峰 汤正阳 戴会超 刘新波 刘芬 张青森

吴倩,戴凌全,任玉峰,等.三峡水库补水调度对东洞庭湖典型沉水植物生境适宜性的影响[J].环境工程技术学报,2023,13(2):617-624 doi: 10.12153/j.issn.1674-991X.20220047
引用本文: 吴倩,戴凌全,任玉峰,等.三峡水库补水调度对东洞庭湖典型沉水植物生境适宜性的影响[J].环境工程技术学报,2023,13(2):617-624 doi: 10.12153/j.issn.1674-991X.20220047
WU Q,DAI L Q,REN Y F,et al.Impact of Three Gorges Reservoir water supply regulation on habitat suitability of typical submerged plants in East Dongting Lake[J].Journal of Environmental Engineering Technology,2023,13(2):617-624 doi: 10.12153/j.issn.1674-991X.20220047
Citation: WU Q,DAI L Q,REN Y F,et al.Impact of Three Gorges Reservoir water supply regulation on habitat suitability of typical submerged plants in East Dongting Lake[J].Journal of Environmental Engineering Technology,2023,13(2):617-624 doi: 10.12153/j.issn.1674-991X.20220047

三峡水库补水调度对东洞庭湖典型沉水植物生境适宜性的影响

doi: 10.12153/j.issn.1674-991X.20220047
基金项目: 智慧长江与水电科学湖北省重点实验室开放基金项目(ZH20020001);中国长江三峡集团有限公司科研项目(202003251);中国博士后科学基金特别资助项目(2019T120119);国家自然科学基金青年基金项目(51809150)
详细信息
    作者简介:

    吴倩(1996—),女,硕士研究生,主要从事生态水利研究,qqwu928@163.com

    通讯作者:

    戴凌全(1986—),男,高级工程师,博士,主要从事水生态与水库优化调度研究,dai_lingquan@ctg.com.cn

  • 中图分类号: X173, X522

Impact of Three Gorges Reservoir water supply regulation on habitat suitability of typical submerged plants in East Dongting Lake

  • 摘要:

    沉水植物是东洞庭湖水生态修复的重要物种,水深是影响沉水植物生长的关键因子之一。为定量描述三峡水库不同补水调度方式对东洞庭湖典型沉水植物生长生境的影响,以刺苦草(Vallisneria spinulosa)为目标物种,利用物理栖息地模型建立三峡水库补水调度期间不同出库流量与东洞庭湖刺苦草生长生境加权可利用面积(WUA)的关系。结果表明:刺苦草生长生境的适宜水深为0.2~1.8 m,最适宜水深为0.5~1.0 m;三峡水库实施补水调度后,东洞庭湖刺苦草生长生境的WUA整体呈现均匀上升趋势;三峡水库补水调度期间,出库流量为5 500~10 500 m3/s时,刺苦草生长生境最适宜水深范围对应的WUA呈现先增后减趋势,在出库流量为9 500 m3/s时WUA最大(74.46 km2),可认为刺苦草生长最适宜出库流量为8 500~10 500 m3/s。研究成果可为通过三峡水库生态调度进行东洞庭湖水生态环境恢复及保护提供参考。

     

  • 图  1  东洞庭湖地理位置及其自然保护区范围

    Figure  1.  Geographical location of East Dongting Lake and its scope of nature reserve

    图  2  刺苦草生长生境水深-适宜度曲线

    Figure  2.  Water depth-suitability curve of Vallisneria spinulosa growth habitat

    图  3  水力学模型构建范围、地形及东洞庭湖网格

    Figure  3.  Hydraulic model construction range, landform and East Dongting Lake grid

    图  4  三峡水库出库流量及“四水”入湖流量

    Figure  4.  Outflow from the TGR and the discharge of Four Rivers

    图  5  螺山站水位-流量关系曲线

    Figure  5.  Relationship between the water level and discharge at Luoshan station

    图  6  长江干流及东洞庭湖各水文站点水位的实测值与模拟值对比

    Figure  6.  Comparison of observed and simulated water level of hydrological stations in the main stream of the Yangtze River and East Dongting Lake

    图  7  三峡水库不同出库流量下东洞庭湖水位分布

    Figure  7.  Distribution of water level in East Dongting Lake under different outflows from TGR

    图  8  三峡水库不同出库流量下东洞庭湖刺苦草生长生境平均适宜水深及分布区域面积占比变化

    Figure  8.  Average suitable water depth and distribution area proportion of Vallisneria spinulosa in East Dongting Lake under different outflows from TGR

    图  9  三峡水库不同出库流量下东洞庭湖刺苦草生长生境适宜度指数分布

    注:图中颜色越接近红色表明适宜度越高,越接近浅蓝色表明适宜度越低;白色表明该水域水深不在刺苦草生长生境适宜水深范围内。

    Figure  9.  HSI of Vallisneria spinulosa in East Dongting Lake under different outflows from TGR

    表  1  三峡水库不同出库流量下东洞庭湖刺苦草生长生境加权可利用面积(WUA)

    Table  1.   WUA of Vallisneria spinulosa in East Dongting Lake under different outflows from TGR

    运行
    状态
    出库流量/
    (m3/s)
    不同水深下的WUA/km2总WUA/
    km2
    0.2~0.50.5~1.01.0~1.8
    运行前 4 716 36.83 28.82 14.41 80.06
    运行后 5 500 41.13 37.39 14.96 93.48
    5 713 40.87 40.27 15.32 96.46
    6 500 39.29 49.39 23.57 112.25
    7 208 37.23 57.13 30.69 125.05
    7 500 36.37 61.06 32.48 129.91
    8 500 42.47 71.76 32.22 146.45
    9 500 43.70 74.46 43.70 161.86
    10 500 43.81 73.60 52.83 170.24
    下载: 导出CSV
  • [1] 戴凌全, 蔡卓森, 刘海波, 等.三峡水库枯水期不同运行方式对洞庭湖生态补水效果研究[J]. 水资源与水工程学报,2019,30(3):170-175.

    DAI L Q, CAI Z S, LIU H B, et al. The effect of Three Gorges Reservoir operation scheme during the dry season on ecological water supplement of Dongting Lake[J]. Journal of Water Resources and Water Engineering,2019,30(3):170-175.
    [2] 段蕴歆, 李景保, 吕殿青, 等.三峡水库运行下长江与洞庭湖交汇区水情态势及相互顶托作用[J]. 长江流域资源与环境,2019,28(10):2471-2483.

    DUAN Y X, LI J B, LǛ D Q, et al. Hydrological conditions and the mutual supporting effects at the intersection area of Dongting Lake and Yangtze River under the operation of the Three Gorges Reservoir[J]. Resources and Environment in the Yangtze Basin,2019,28(10):2471-2483.
    [3] ZHU Y W, WANG H X, GUO W X. The impacts of water level fluctuations of East Dongting Lake on habitat suitability of migratory birds[J]. Ecological Indicators,2021,132:108277. doi: 10.1016/j.ecolind.2021.108277
    [4] 王丽婧, 田泽斌, 李莹杰, 等.洞庭湖近30年水环境演变态势及影响因素研究[J]. 环境科学研究,2020,33(5):1140-1149.

    WANG L J, TIAN Z B, LI Y J, et al. Trend and driving factors of water environment change in Dongting Lake in the last 30 years[J]. Research of Environmental Sciences,2020,33(5):1140-1149.
    [5] 王婷, 王坤, 王丽婧, 等.三峡工程运行对洞庭湖水环境及富营养化风险影响评述[J]. 环境科学研究,2018,31(1):15-24.

    WANG T, WANG K, WANG L J, et al. Impacts of the Three Gorges Dam operation on water environment and eutrophication of Dongting Lake: a review[J]. Research of Environmental Sciences,2018,31(1):15-24.
    [6] 张光贵, 黄博.洞庭湖表层沉积物营养盐污染特征与评价[J]. 环境工程技术学报,2014,4(6):514-519. doi: 10.3969/j.issn.1674-991X.2014.06.081

    ZHANG G G, HUANG B. Pollution characteristics and evaluation of surface sediment nutrients in Dongting Lake[J]. Journal of Environmental Engineering Technology,2014,4(6):514-519. doi: 10.3969/j.issn.1674-991X.2014.06.081
    [7] 黄代中, 万群, 李利强, 等.洞庭湖近20年水质与富营养化状态变化[J]. 环境科学研究,2013,26(1):27-33.

    HUANG D Z, WAN Q, LI L Q, et al. Changes of water quality and eutrophic state in recent 20 years of Dongting Lake[J]. Research of Environmental Sciences,2013,26(1):27-33.
    [8] 张晓波. 江湖关系变化背景下洞庭湖湿地植物恢复潜力与环境影响因子[D]. 北京: 北京林业大学, 2021.
    [9] 吴振斌. 水生植物与水体生态修复[M]. 北京: 科学出版社, 2011.
    [10] 李琳, 岳春雷, 张华, 等.不同沉水植物净水能力与植株体细菌群落组成相关性[J]. 环境科学,2019,40(11):4962-4970.

    LI L, YUE C L, ZHANG H, et al. Correlation between water purification capacity and bacterial community composition of different submerged macrophytes[J]. Environmental Science,2019,40(11):4962-4970.
    [11] 代亮亮, 张云, 李双双, 等.不同营养水平下沉水植物的抑藻效应[J]. 环境科学学报,2019,39(6):1801-1807.

    DAI L L, ZHANG Y, LI S S, et al. Inhibition of algae growth by submerged macrophyte at different nutrient levels[J]. Acta Scientiae Circumstantiae,2019,39(6):1801-1807.
    [12] 常宝亮, 上官凌飞, 沈志国, 等.六种沉水植物对三种不同氮磷浓度水体的净化效果[J]. 给水排水,2021,57(增刊 1):230-236.

    CHANG B L, SHANGGUAN L F, SHEN Z G, et al. Purification effect of six submerged macrophytes on three different concentrations of nitrogen and phosphorus[J]. Water & Wastewater Engineering,2021,57(Suppl 1):230-236.
    [13] 张嵘梅, 马博馨, 杨志杰, 等.沉水植物苦草属在水体环境修复中的研究进展和应用现状[J]. 中国农学通报,2016,32(28):144-154. doi: 10.11924/j.issn.1000-6850.casb16020038

    ZHANG R M, MA B X, YANG Z J, et al. Research advances and application situation of Vallisneria in water environmental restoration[J]. Chinese Agricultural Science Bulletin,2016,32(28):144-154. doi: 10.11924/j.issn.1000-6850.casb16020038
    [14] 梁婕, 蔡青, 郭生练, 等.基于MODIS的洞庭湖湿地面积对水文的响应[J]. 生态学报,2012,32(21):6628-6635. doi: 10.5846/stxb201110041448

    LIANG J, CAI Q, GUO S L, et al. MODIS-based analysis of wetland area responses to hydrological processes in the Dongting Lake[J]. Acta Ecologica Sinica,2012,32(21):6628-6635. doi: 10.5846/stxb201110041448
    [15] 熊鹰, 汪敏, 袁海平, 等.洞庭湖区景观生态风险评价及其时空演化[J]. 生态环境学报,2020,29(7):1292-1301.

    XIONG Y, WANG M, YUAN H P, et al. Landscape ecological risk assessment and its spatio-temporal evolution in Dongting Lake area[J]. Ecology and Environmental Sciences,2020,29(7):1292-1301.
    [16] 熊秉红, 李伟.我国苦草属(Vallisneria L. )植物的生态学研究[J]. 武汉植物学研究,2000,18(6):500-508.

    XIONG B H, LI W. Ecological studies on Vallisneria L. in China[J]. Journal of Wuhan Botanical Research,2000,18(6):500-508.
    [17] LI Q S, HAN Y Q, CHEN K Q, et al. Effects of water depth on the growth of the submerged macrophytes Vallisneria natans and Hydrilla verticillata: implications for water level management[J]. Water,2021,13(18):2590. doi: 10.3390/w13182590
    [18] KANG C X, DAI X Z, TONG Z G, et al. Effects of water depth and sediment nutrients on Vallisneria spinulosa in Lake Poyang[J]. Journal of Freshwater Ecology,2019,34(1):263-272. doi: 10.1080/02705060.2018.1559243
    [19] 赵风斌, 徐后涛, 刘艳红, 等.不同水深下异龙湖苦草的生长特性[J]. 湿地科学,2017,15(2):214-220.

    ZHAO F B, XU H T, LIU Y H, et al. Growth characteristics of Vallisneria natans under different water depths in Yilong Lake[J]. Wetland Science,2017,15(2):214-220.
    [20] 顾燕飞, 王俊, 王洁, 等.不同水深条件下沉水植物苦草(Vallisneria natans)的形态响应和生长策略[J]. 湖泊科学,2017,29(3):654-661. doi: 10.18307/2017.0314

    GU Y F, WANG J, WANG J, et al. Morphological response and growth strategy of the submerged macrophyte Vallisneria natans under different water depths[J]. Journal of Lake Sciences,2017,29(3):654-661. doi: 10.18307/2017.0314
    [21] 李跃龙. 洞庭湖的演变、开发和治理简史[M]. 长沙: 湖南大学出版社, 2014: 119-212.
    [22] 余姝辰. 基于历史地图和多源遥感数据的近百年来洞庭湖区江湖格局演化[D]. 北京: 中国地质大学,2021.
    [23] 彭焕华, 张静, 梁继, 等.东洞庭湖水面面积变化监测及其与水位的关系[J]. 长江流域资源与环境,2020,29(12):2770-2780.

    PENG H H, ZHANG J, LIANG J, et al. Monitoring the changes of water area and its relation with water levels of hydrological station in east Dongting Lake[J]. Resources and Environment in the Yangtze Basin,2020,29(12):2770-2780.
    [24] 东洞庭湖国家级自然保护区简介[EB/OL].(2022-02-10)[2022-02-20]. https://www.bilibili.com/read/cv15200847/.
    [25] 易雨君, 张尚弘.水生生物栖息地模拟方法及模型综述[J]. 中国科学:技术科学,2019,49(4):363-377. doi: 10.1360/N092018-00217

    YI Y J, ZHANG S H. Review of aquatic species habitat simulation method and modelling[J]. Scientia Sinica (Technologica),2019,49(4):363-377. doi: 10.1360/N092018-00217
    [26] 张文鸽, 黄强, 蒋晓辉.基于物理栖息地模拟的河道内生态流量研究[J]. 水科学进展,2008,19(2):192-197.

    ZHANG W G, HUANG Q, JIANG X H. Study on instream ecological flow based on physical habitat simulation[J]. Advances in Water Science,2008,19(2):192-197.
    [27] 班璇, 郭舟, 熊兴基, 等.长江中游典型河段底栖动物的物理栖息地模型构建与应用[J]. 水利学报,2020,51(8):936-946.

    BAN X, GUO Z, XIONG X J, et al. Applying physical habitat model of zoobenthos in typical reaches of the Yangtze River[J]. Journal of Hydraulic Engineering,2020,51(8):936-946.
    [28] 张萌, 刘足根, 李雄清, 等.长江中下游浅水湖泊水生植被生态修复种的筛选与应用研究[J]. 生态科学,2014,33(2):344-352.

    ZHANG M, LIU Z G, LI X Q, et al. Studies of the selection and application of suitable hydrophyte species on lake restoration in the middle and lower reaches of Yangtze River[J]. Ecological Science,2014,33(2):344-352.
    [29] 陈磊, 叶其刚, 潘丽珠, 等.长江中下游湖泊两种混生苦草属植物生活史特征与共存分布格局[J]. 植物生态学报,2008,32(1):106-113.

    CHEN L, YE Q G, PAN L Z, et al. Vallisneria species in lakes of the middle-lower reaches of the Yangtze River of China[J]. Journal of Plant Ecology,2008,32(1):106-113.
    [30] 黎磊, 张笑辰, 秦海明, 等.食块茎水鸟及水位对沙湖沉水植物冬芽分布的影响[J]. 生态学杂志,2015,34(3):661-669.

    LI L, ZHANG X C, QIN H M, et al. Effects of tuber-feeding waterbird guild and water level fluctuation on tuber distribution of submerged macrophytes in Shahu Lake[J]. Chinese Journal of Ecology,2015,34(3):661-669.
    [31] 王瑞, 何亮, 张萌, 等.中国苦草属(Vallisneria)植物萌发与生长的影响因素[J]. 湖泊科学,2021,33(5):1315-1333. doi: 10.18307/2021.0503

    WANG R, HE L, ZHANG M, et al. Factors on seed germination, tuber sprout and plant growth of Vallisneria species in China[J]. Journal of Lake Sciences,2021,33(5):1315-1333. doi: 10.18307/2021.0503
    [32] 李俊. 鄱阳湖水位和氮浓度变化对刺苦草的影响[D]. 南昌: 华东交通大学, 2021.
    [33] 刘向东, 侯志勇, 谢永宏, 等.水位对洞庭湖湿地4种典型沉水植物的影响[J]. 湖泊科学,2021,33(1):181-191. doi: 10.18307/2021.0113

    LIU X D, HOU Z Y, XIE Y H, et al. Influence of water level on four typical submerged plants in wetlands of Lake Dongting[J]. Journal of Lake Sciences,2021,33(1):181-191. doi: 10.18307/2021.0113
    [34] MORIASI D N, ARNOLD J G, LIEW M W V, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE,2007,50(3):885-900. doi: 10.13031/2013.23153
    [35] 周根苗, 李新建, 王志强, 等.东洞庭湖湿地景观格局演变及稳定性研究[J]. 湖南林业科技,2021,48(4):79-86.

    ZHOU G M, LI X J, WANG Z Q, et al. Study on the change and stability of wetland landscape pattern in East Dongting Lake[J]. Hunan Forestry Science & Technology,2021,48(4):79-86.
    [36] 周静, 万荣荣, 吴兴华, 等.洞庭湖湿地植被长期格局变化(1987—2016年)及其对水文过程的响应[J]. 湖泊科学,2020,32(6):1723-1735. doi: 10.18307/2020.0613

    ZHOU J, WAN R R, WU X H, et al. Patterns of long-term distribution of typical wetland vegetation (1987-2016) and its response to hydrological processes in Lake Dongting[J]. Journal of Lake Sciences,2020,32(6):1723-1735. ◇ doi: 10.18307/2020.0613
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  90
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-17

目录

    /

    返回文章
    返回