留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水中聚乙烯微塑料风化行为对混凝过程的影响

徐铭遥 彭少茵 齐飞 李晨 王振北 郭明宇

徐铭遥,彭少茵,齐飞,等.水中聚乙烯微塑料风化行为对混凝过程的影响[J].环境工程技术学报,2023,13(2):632-638 doi: 10.12153/j.issn.1674-991X.20220032
引用本文: 徐铭遥,彭少茵,齐飞,等.水中聚乙烯微塑料风化行为对混凝过程的影响[J].环境工程技术学报,2023,13(2):632-638 doi: 10.12153/j.issn.1674-991X.20220032
XU M Y,PENG S Y,QI F,et al.Effect of weathering behavior of polyethylene microplastics in water on coagulation process[J].Journal of Environmental Engineering Technology,2023,13(2):632-638 doi: 10.12153/j.issn.1674-991X.20220032
Citation: XU M Y,PENG S Y,QI F,et al.Effect of weathering behavior of polyethylene microplastics in water on coagulation process[J].Journal of Environmental Engineering Technology,2023,13(2):632-638 doi: 10.12153/j.issn.1674-991X.20220032

水中聚乙烯微塑料风化行为对混凝过程的影响

doi: 10.12153/j.issn.1674-991X.20220032
基金项目: 大学生创新创业训练计划项目(X201910022166);国家自然科学基金青年基金项目(52100002);城市水资源与水环境国家重点实验室开放课题(QA202014);北京林业大学中央高校基本科研业务费专项(BLX201933);国家重点研发计划项目(2021YFE0100800);中国博士后科学基金(2021M700448)
详细信息
    作者简介:

    徐铭遥(1998—),女,硕士,研究方向为滤饼层动态膜协同超滤膜处理技术,xvmingyao@163.com

    通讯作者:

    王振北(1989—),男,讲师,博士,研究方向为水中颗粒特征动态演变及膜法水处理技术,wangzhenbei119@163.com

  • 中图分类号: X703

Effect of weathering behavior of polyethylene microplastics in water on coagulation process

  • 摘要:

    以地表水中丰度较高的聚乙烯(PE)微塑料作为研究对象,开展吸附和混凝试验,在解析PE微塑料对水中有机物吸附能力的基础上,用氙灯对PE微塑料进行光老化以模拟微塑料在自然条件下的风化行为,深入研究PE微塑料风化行为对混凝过程的影响。结果表明:粒度为50~200目的PE微塑料对有机物的吸附量为310~350 mg/g(以碳计),不存在显著的吸附性能差异。在混凝过程中,相较于未添加PE微塑料的情况,添加未风化的PE微塑料会降低有机物去除率,而添加风化PE微塑料则能明显提升有机物去除率。同时,混凝过程对风化PE微塑料的去除率高于未风化PE微塑料,表明PE微塑料的风化行为有利于其在混凝过程中被去除。根据混凝过程中絮体特征可知,PE微塑料的风化行为对形成絮体的尺寸影响极小,但能显著提高絮体的生长速度。

     

  • 图  1  PE微塑料粒度对其有机物吸附性能的影响

    Figure  1.  Effect of particle size of PE microplastics on organic matter adsorption performance

    图  2  微塑料对混凝过程有机物去除性能影响

    Figure  2.  Effect of microplastics on organic matter removal performance in coagulation process

    图  3  微塑料样品中的化学官能团变化的FT-IR

    Figure  3.  Changes of chemical functional groups in microplastic samples (FT-IR)

    图  4  不同混凝剂投加量条件下混凝出水中风化PE微塑料形态

    Figure  4.  Image of weathered microplastics in coagulated effluent under different coagulant dosages

    图  5  不同混凝剂投加量条件下混凝出水中未风化PE微塑料形态

    Figure  5.  Image of unweathered microplastics in coagulated effluent under different coagulant dosages

    图  6  不同混凝剂投加量条件下原水混凝过程中絮体粒径的变化

    Figure  6.  Change of floc particle size in different surface water coagulation processes under different coagulant dosages

    图  7  不同模拟地表水混凝过程中絮体生长速度的变化

    Figure  7.  Change of floc growth rate in different simulated surface water coagulation processes

    表  1  混凝出水中PE微塑料数量及去除率

    Table  1.   Quantity and removal rate of PE microplastics in coagulated water

    混凝剂投加量/
    (mg/L)
    未风化PE微塑料风化PE微塑料
    数量/个去除率/%数量/个去除率/%
    1556±35.90±1.3726±248.40±1.88
    2044±422.64±1.9122±055.86±2.65
    2538±236.70±2.5120±559.61±4.24
    3016±372.66±1.6511±280.13±1.31
    3546±623.30±2.9824±353.30±3.98
    下载: 导出CSV
  • [1] MA B W, XUE W J, HU C Z, et al. Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment[J]. Chemical Engineering Journal,2019,359:159-167. doi: 10.1016/j.cej.2018.11.155
    [2] 姚皓文.废弃塑料泛滥危机的对策模型[J]. 中国资源综合利用,2020,38(6):69-71. doi: 10.3969/j.issn.1008-9500.2020.06.022

    YAO H W. The countermeasure model of waste plastic flooding crisis[J]. China Resources Comprehensive Utilization,2020,38(6):69-71. doi: 10.3969/j.issn.1008-9500.2020.06.022
    [3] WANG C, XIAN Z Y, JIN X, et al. Photo-aging of polyvinyl chloride microplastic in the presence of natural organic acids[J]. Water Research,2020,183:116082. doi: 10.1016/j.watres.2020.116082
    [4] 刘彬, 侯立安, 王媛, 等.我国海洋塑料垃圾和微塑料排放现状及对策[J]. 环境科学研究,2020,33(1):174-182. doi: 10.13198/j.issn.1001-6929.2019.07.05

    LIU B, HOU L A, WANG Y, et al. Emission estimate and countermeasures of marine plastic debris and microplastics in China[J]. Research of Environmental Sciences,2020,33(1):174-182. doi: 10.13198/j.issn.1001-6929.2019.07.05
    [5] LEE Y K, HUR J. Adsorption of microplastic-derived organic matter onto minerals[J]. Water Research,2020,187:116426. doi: 10.1016/j.watres.2020.116426
    [6] LEE Y K, ROMERA-CASTILLO C, HONG S, et al. Characteristics of microplastic polymer-derived dissolved organic matter and its potential as a disinfection byproduct precursor[J]. Water Research,2020,175:115678. doi: 10.1016/j.watres.2020.115678
    [7] 王赛, 张岚, 陈永艳, 等.饮用水处理技术去除微塑料的效果及进展[J]. 净水技术,2021,40(10):20-25. doi: 10.15890/j.cnki.jsjs.2021.10.003

    WANG S, ZHANG L, CHEN Y Y, et al. Effect and progress of microplastics removal in drinking water treatment process[J]. Water Purification Technology,2021,40(10):20-25. doi: 10.15890/j.cnki.jsjs.2021.10.003
    [8] 赵艳民, 马迎群, 温泉, 等.基于不确定性的天津市北塘排污河表层沉积物微塑料污染评价[J]. 环境工程技术学报,2021,11(3):554-561. doi: 10.12153/j.issn.1674-991X.20200098

    ZHAO Y M, MA Y Q, WEN Q, et al. Evaluation of microplastics pollution in surface sediments of Beitang Drainage River in Tianjin City based on uncertainty[J]. Journal of Environmental Engineering Technology,2021,11(3):554-561. doi: 10.12153/j.issn.1674-991X.20200098
    [9] HERNANDEZ E, NOWACK B, MITRANO D M. Polyester textiles as a source of microplastics from households: a mechanistic study to understand microfiber release during washing[J]. Environmental Science & Technology,2017,51(12):7036-7046.
    [10] SKAF D W, PUNZI V L, ROLLE J T, et al. Removal of micron-sized microplastic particles from simulated drinking water via alum coagulation[J]. Chemical Engineering Journal,2020,386:123807. doi: 10.1016/j.cej.2019.123807
    [11] NELMS S E, BARNETT J, BROWNLOW A, et al. Microplastics in marine mammals stranded around the British coast: ubiquitous but transitory[J]. Scientific Reports,2019,9:1075. doi: 10.1038/s41598-018-37428-3
    [12] MOORE R C, LOSETO L, NOEL M, et al. Microplastics in beluga whales (Delphinapterus leucas) from the eastern Beaufort Sea[J]. Marine Pollution Bulletin,2020,150:110723. doi: 10.1016/j.marpolbul.2019.110723
    [13] 赵美静, 夏斌, 朱琳, 等.微塑料与有毒污染物相互作用及联合毒性作用研究进展[J]. 生态毒理学报,2021,16(5):168-185.

    ZHAO M J, XIA B, ZHU L, et al. Research progress on interaction and joint toxicity of microplastics with toxic pollutants[J]. Asian Journal of Ecotoxicology,2021,16(5):168-185.
    [14] PRATA J C, da COSTA J P, LOPES I, et al. Environmental exposure to microplastics: an overview on possible human health effects[J]. Science of the Total Environment,2020,702:134455. doi: 10.1016/j.scitotenv.2019.134455
    [15] STRAK M, JANSSEN N A H, GODRI K J, et al. Respiratory health effects of airborne particulate matter: the role of particle size, composition, and oxidative potential-the RAPTES project[J]. Environmental Health Perspectives,2012,120(8):1183-1189. doi: 10.1289/ehp.1104389
    [16] XU H Y, VERBEKEN E, VANHOOREN H M, et al. Pulmonary toxicity of polyvinyl chloride particles after a single intratracheal instillation in rats: time course and comparison with silica[J]. Toxicology and Applied Pharmacology,2004,194(2):111-121. doi: 10.1016/j.taap.2003.09.018
    [17] 张嘉戌, 邓义祥, 张承龙, 等.基于环境行为理论的公众一次性塑料减量政策研究[J]. 环境工程技术学报,2021,11(5):888-897. doi: 10.12153/j.issn.1674-991X.20200300

    ZHANG J X, DENG Y X, ZHANG C L, et al. Study on the public single-use plastics reduction policies based on the theory of environmental behaviors[J]. Journal of Environmental Engineering Technology,2021,11(5):888-897. doi: 10.12153/j.issn.1674-991X.20200300
    [18] 荣佳辉, 牛学锐, 韩美, 等.河流微塑料入海通量研究进展[J]. 环境科学研究,2021,34(7):1630-1640. doi: 10.13198/j.issn.1001-6929.2020.12.21

    RONG J H, NIU X R, HAN M, et al. Global river microplastics flux into the sea: a review[J]. Research of Environmental Sciences,2021,34(7):1630-1640. doi: 10.13198/j.issn.1001-6929.2020.12.21
    [19] HAN M, NIU X R, TANG M, et al. Distribution of microplastics in surface water of the lower Yellow River near estuary[J]. Science of the Total Environment,2020,707:135601. doi: 10.1016/j.scitotenv.2019.135601
    [20] 李高俊, 熊雄, 詹晨熙, 等.南渡江水体微塑料污染现状研究[J]. 环境科学学报,2022,42(2):205-212.

    LI G J, XIONG X, ZHAN C X, et al. Occurrence of microplastics in the water of the nandu Jiang River[J]. Acta Scientiae Circumstantiae,2022,42(2):205-212.
    [21] 周叶, 高峰, 戚雷强.混凝水处理法应用现状及强化措施探讨[J]. 净水技术,2021,40(增刊 1):9-14. doi: 10.15890/j.cnki.jsjs.2021.s1.003

    ZHOU Y, GAO F, QI L Q. Discussion on application status and improvement measures of coagulation technology for water treatment[J]. Water Purification Technology,2021,40(Suppl 1):9-14. doi: 10.15890/j.cnki.jsjs.2021.s1.003
    [22] WANG W Y, YUE Q Y, GUO K Y, et al. Application of Al species in coagulation/ultrafiltration process: influence of cake layer on membrane fouling[J]. Journal of Membrane Science,2019,572:161-170. doi: 10.1016/j.memsci.2018.11.014
    [23] 徐琪珂, 戴红玲, 赵国强, 等.微涡流絮凝工艺处理高浊水的数值模拟与响应面优化试验[J]. 环境工程技术学报,2022,12(1):62-69. doi: 10.12153/j.issn.1674-991X.20210620

    XU Q K, DAI H L, ZHAO G Q, et al. Numerical simulation and response surface optimization of micro-vortex flocculation process for high turbidity water treatment[J]. Journal of Environmental Engineering Technology,2022,12(1):62-69. doi: 10.12153/j.issn.1674-991X.20210620
    [24] YEANG H Y. Synchronous flowering of the rubber tree (Hevea brasiliensis) induced by high solar radiation intensity[J]. The New Phytologist,2007,175(2):283-289. doi: 10.1111/j.1469-8137.2007.02089.x
    [25] CLASEN J, MISCHKE U, DRIKAS M, et al. An improved method for detecting electrophoretic mobility of algae during the destabilisation process of flocculation: flocculant demand of different species and the impact of DOC[J]. Journal of Water Supply:Research and Technology-Aqua,2000,49(2):89-101. doi: 10.2166/aqua.2000.0008
    [26] GAFFNEY J, MARLEY N, CLARK S. Humic and fluvic acids and organic colloidal materials in the environment[M]. Washington DC: ACS Symposium Series, American Chemical Society, 1996.
    [27] 孙璇, 俞安琪, 王学松, 等.富里酸在聚苯乙烯微塑料上的吸附行为[J]. 中国环境科学,2022,42(1):285-292. doi: 10.3969/j.issn.1000-6923.2022.01.031

    SUN X, YU A Q, WANG X S, et al. Adsorption behaviors of fulvic acid onto polystyrene microplastics[J]. China Environmental Science,2022,42(1):285-292. doi: 10.3969/j.issn.1000-6923.2022.01.031
    [28] LARCHÉ J F, BUSSIÈRE P O, THÉRIAS S, et al. Photooxidation of polymers: relating material properties to chemical changes[J]. Polymer Degradation and Stability,2012,97(1):25-34. doi: 10.1016/j.polymdegradstab.2011.10.020
    [29] 张桂芝, 杨清伟, 蹇徽龙, 等.水环境中微塑料对典型污染物的吸附行为研究进展[J]. 应用化工,2022,51(1):246-250. doi: 10.3969/j.issn.1671-3206.2022.01.051

    ZHANG G Z, YANG Q W, JIAN H L, et al. Research progress on the adsorption behavior of typical pollutants by microplastics in water environment[J]. Applied Chemical Industry,2022,51(1):246-250. doi: 10.3969/j.issn.1671-3206.2022.01.051
    [30] 吴小伟, 黄何欣悦, 石妍琦, 等.水环境中微塑料的光老化过程及影响因素研究进展[J]. 科学通报,2021,66(36):4619-4632. doi: 10.1360/TB-2021-0376

    WU X W, HUANG H X Y, SHI Y Q, et al. Progress on the photo aging mechanism of microplastics and related impact factors in water environment[J]. Chinese Science Bulletin,2021,66(36):4619-4632. ⊗ doi: 10.1360/TB-2021-0376
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  213
  • HTML全文浏览量:  97
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-12

目录

    /

    返回文章
    返回