留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微纳米气泡特性及在土壤环境改善中的应用

黄青 刘爱荣 张立娟

黄青,刘爱荣,张立娟.微纳米气泡特性及在土壤环境改善中的应用[J].环境工程技术学报,2022,12(4):1324-1332 doi: 10.12153/j.issn.1674-991X.20210874
引用本文: 黄青,刘爱荣,张立娟.微纳米气泡特性及在土壤环境改善中的应用[J].环境工程技术学报,2022,12(4):1324-1332 doi: 10.12153/j.issn.1674-991X.20210874
HUANG Q,LIU A R,ZHANG L J.Characteristics of micro-nanobubbles and their applications in soil environment improvement[J].Journal of Environmental Engineering Technology,2022,12(4):1324-1332 doi: 10.12153/j.issn.1674-991X.20210874
Citation: HUANG Q,LIU A R,ZHANG L J.Characteristics of micro-nanobubbles and their applications in soil environment improvement[J].Journal of Environmental Engineering Technology,2022,12(4):1324-1332 doi: 10.12153/j.issn.1674-991X.20210874

微纳米气泡特性及在土壤环境改善中的应用

doi: 10.12153/j.issn.1674-991X.20210874
基金项目: 国家重点研发计划项目(2019YFC1805300);国家自然科学基金面上项目(42073082,11874379,11575281);中国科学院前沿科学重点研究项目(QYZDJ-SSW-SLH019);广东省重点领域研发计划项目(B2020202048)
详细信息
    作者简介:

    黄青(1992—),女,博士,研究方向为纳米材料在环境改善中的应用,huangqing@tongji.edu.cn

    通讯作者:

    刘爱荣(1975—),女,副教授,博士,研究方向为纳米零价铁在水处理中的应用,liuairong@tongji.edu.cn

    张立娟(1973—),女,研究员,博士,研究方向为利用同步辐射和原子力显微技术研究纳米气泡的基本性质和应用,zhanglijuan@sari.ac.cn

  • 中图分类号: X53

Characteristics of micro-nanobubbles and their applications in soil environment improvement

  • 摘要:

    微纳米气泡由于其独特的物理化学特性,如超高稳定性、易于产生自由基和高的传质效率等,引起国内外学者的广泛关注。近年来,微纳米气泡技术作为一种新兴的高效技术手段,被广泛应用于水产养殖、农业种植、浮选、水处理等方面,而在改善土壤方面的应用相对较少。基于微纳米气泡改善土壤已有研究成果,对微纳米气泡的基本性质,国内外研究进展及应用进行了综述与探讨,初步明晰了微纳米气泡在土壤改善过程中的作用效果,包括可以增强土壤通透性,有效去除水体中的有机和金属污染物质,改变微生物团簇结构,降低矿物沉积能力等,以期为后续微纳米气泡改善土壤环境的研究带来一定的启发。

     

  • 图  1  国内关于微纳米气泡的研究进展

    注:数据来源于中国知网,统计截至2021年12月。

    Figure  1.  Research progress on micro-nanobubbles in domestic journals

    图  2  国内文献互引分析

    Figure  2.  Cross-citation analysis of domestic literatures

    图  3  国外关于微纳米气泡的研究进展

    注:数据来源于https://www.webofscience.com,截至2021年12月。

    Figure  3.  Research progress on micro-nanobubbles in foreign journals

    图  4  相关文章关键词的词共现关系

    Figure  4.  Co-occurrence diagram of keywords in related literature

    图  5  臭氧纳米气泡发生装置

    Figure  5.  Ozone nanobubble generation system[28]

  • [1] JOHNSON B D, COOKE R C. Generation of stabilized microbubbles in seawater[J]. Science,1981,213:209-211. doi: 10.1126/science.213.4504.209
    [2] PARKER J L, CLAESSON P M, ATTARD P. Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces[J]. The Journal of Physical Chemistry,1994,98(34):8468-8480. doi: 10.1021/j100085a029
    [3] LOU S T, OUYANG Z Q, ZHANG Y, et al. Nanobubbles on solid surface imaged by atomic force microscopy[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,2000,18(5):2573.
    [4] ISHIDA N, INOUE T, MIYAHARA M, et al. Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy[J]. Langmuir,2000,16:6377-6380. doi: 10.1021/la000219r
    [5] TEMESGEN T, BUI T T, HAN M, et al. Micro and nanobubble technologies as a new horizon for water-treatment techniques: a review[J]. Advances in Colloid and Interface Science,2017,246:40-51. doi: 10.1016/j.cis.2017.06.011
    [6] 张立娟, 陈浩, 李朝霞, 等.纳米气泡的长寿源于其高的内部密度[J]. 中国科学(G辑:物理学 力学 天文学),2007,37(4):556-560.
    [7] 张立娟, 胡钧.界面纳米气泡研究历史和展望[J]. 净水技术,2021,40(2):2-23.

    ZHANG L J, HU J. Research history and prospect of interfacial nanobubbles[J]. Water Purification Technology,2021,40(2):2-23.
    [8] 周利民, 王兴亚, 张立娟, 等.纳米气泡的同步辐射研究进展[J]. 中国科学:物理学 力学 天文学,2021,51(9):53-65.

    ZHOU L M, WANG X Y, ZHANG L J, et al. Recent developments in nanobubble research based on synchrotron radiation techniques[J]. Scientia Sinica (Physica, Mechanica & Astronomica),2021,51(9):53-65.
    [9] 崔永高.酚污染地下水化学氧化修复技术进展[J]. 上海国土资源,2019,40(4):82-88. doi: 10.3969/j.issn.2095-1329.2019.04.015

    CUI Y G. Technical advances in chemical oxidation remediation of groundwater contaminated by phenols[J]. Shanghai Land & Resources,2019,40(4):82-88. doi: 10.3969/j.issn.2095-1329.2019.04.015
    [10] 洪涛, 叶春, 李春华, 等.微米气泡曝气技术处理黑臭河水的效果研究[J]. 环境工程技术学报,2011,1(1):20-25. doi: 10.3969/j.issn.1674-991X.2011.01.004

    HONG T, YE C, LI C H, et al. Treatment effect of microbubble aeration technology on black-odor river water[J]. Journal of Environmental Engineering Technology,2011,1(1):20-25. doi: 10.3969/j.issn.1674-991X.2011.01.004
    [11] AGARWAL A, NG W J, LIU Y. Principle and applications of microbubble and nanobubble technology for water treatment[J]. Chemosphere,2011,84(9):1175-1180. doi: 10.1016/j.chemosphere.2011.05.054
    [12] 马艳, 张鑫, 韩小蒙, 等.臭氧微纳米气泡技术在水处理中的应用进展[J]. 净水技术,2019,38(8):64-67.

    MA Y, ZHANG X, HAN X M, et al. Application of micro-nano ozone bubble technology in water treatment: a review[J]. Water Purification Technology,2019,38(8):64-67.
    [13] 鲍旭腾, 陈庆余, 徐志强, 等.微纳米气泡技术在渔业水产行业的研究进展及应用综述[J]. 净水技术,2016,35(4):16-22. doi: 10.3969/j.issn.1009-0177.2016.04.003

    BAO X T, CHEN Q Y, XU Z Q, et al. Overview of research advances and application of micro-nano bubbles technology in fishery and aquaculture sector[J]. Water Purification Technology,2016,35(4):16-22. doi: 10.3969/j.issn.1009-0177.2016.04.003
    [14] 杨晓东, 陈鲁海, 张立娟, 等.微纳气泡技术及在农业种植与养殖方面的应用[J]. 净水技术,2021,40(2):118-126.

    YANG X D, CHEN L H, ZHANG L J, et al. Application of micro-nano bubbles in agricultural planting and aquaculture[J]. Water Purification Technology,2021,40(2):118-126.
    [15] 蔡九茂, 翟国亮, 吕谋超, 等. 微纳米气泡在农业灌溉领域的应用展望[J]. 灌溉排水学报, 2016, 35(增刊1): 102-107.

    CAI J M, ZHAI G L, LÜ M C, et al. Application and prospect of micro-nano bubble in agriculture irrigation areas[J]. Journal of Irrigation and Drainage, 2016, 35(Suppl 1): 102-107.
    [16] 刘秋菊, 熊若晗, 宋艳芳, 等.微纳米气泡在环境污染控制领域的应用[J]. 环境与可持续发展,2017,42(3):100-102. doi: 10.3969/j.issn.1673-288X.2017.03.026

    LIU Q J, XIONG R H, SONG Y F, et al. The application of micro-nano bubble in environmental pollution control[J]. Environment and Sustainable Development,2017,42(3):100-102. doi: 10.3969/j.issn.1673-288X.2017.03.026
    [17] 李光超.我国土壤污染现状与修复技术综述[J]. 农业与技术,2015,35(18):3.
    [18] 马妍, 郑红光, 史怡, 等. 典型农药污染地块土壤中异味物质的筛查与分布特征研究[J/OL]. 环境科学研究, 2022. doi: 10.13198/j.issn.1001-6929.2022.02.05.
    [19] CAO Y, FENG H Y, SUN D, et al. Heterologous expression of Pteris vittata phosphate transporter PvPht1;3 enhances arsenic translocation to and accumulation in tobacco shoots[J]. Environmental Science & Technology,2019,53(18):10636-10644.
    [20] 王庆宏, 郑逸, 李倩玮, 等.污染土壤生物联合修复机制研究进展[J]. 环境科学研究,2022,35(1):246-256.

    WANG Q H, ZHENG Y, LI Q W, et al. Overview of combined bioremediation mechanism of contaminated soil[J]. Research of Environmental Sciences,2022,35(1):246-256.
    [21] LOHSE D, ZHANG X H. Surface nanobubbles and nanodroplets[J]. Reviews of Modern Physics,2015,87(3):981-1035. doi: 10.1103/RevModPhys.87.981
    [22] YASUI K, TUZIUTI T, KANEMATSU W. Mysteries of bulk nanobubbles (ultrafine bubbles);stability and radical formation[J]. Ultrasonics Sonochemistry,2018,48:259-266. doi: 10.1016/j.ultsonch.2018.05.038
    [23] TAN B H, AN H J, OHL C D. Surface nanobubbles are stabilized by hydrophobic attraction[J]. Physical Review Letters,2018,120(16):164502. doi: 10.1103/PhysRevLett.120.164502
    [24] TAN B H, AN H J, OHL C D. How bulk nanobubbles might survive[J]. Physical Review Letters,2020,124(13):134503. doi: 10.1103/PhysRevLett.124.134503
    [25] SEDDON J R T, KOOIJ E S, POELSEMA B, et al. Surface bubble nucleation stability[J]. Physical Review Letters,2011,106(5):056101. doi: 10.1103/PhysRevLett.106.056101
    [26] 刘玉龙, 金诚, 刘欲文, 等.纳米气泡电化学研究进展[J]. 中国科学:化学,2021,51(3):310-322. doi: 10.1360/SSC-2020-0149

    LIU Y L, JIN C, LIU Y W, et al. Recent progress in gas nanobubble electrochemistry[J]. Scientia Sinica (Chimica),2021,51(3):310-322. doi: 10.1360/SSC-2020-0149
    [27] ZHANG X H, LHUISSIER H, SUN C, et al. Surface nanobubbles nucleate microdroplets[J]. Physical Review Letters,2014,112(14):144503. doi: 10.1103/PhysRevLett.112.144503
    [28] ALUTHGUN-HEWAGE S, BATAGODA J H, MEEGODA J N. In situ remediation of sediments contaminated with organic pollutants using ultrasound and ozone nanobubbles[J]. Environmental Engineering Science,2020,37(8):521-534. doi: 10.1089/ees.2019.0497
    [29] SVETOVOY V B, SANDERS R G P, LAMMERINK T S J, et al. Combustion of hydrogen-oxygen mixture in electrochemically generated nanobubbles[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics,2011,84:035302. doi: 10.1103/PhysRevE.84.035302
    [30] ZHOU L M, WANG X Y, SHIN H J, et al. Ultrahigh density of gas molecules confined in surface nanobubbles in ambient water[J]. Journal of the American Chemical Society,2020,142(12):5583-5593. doi: 10.1021/jacs.9b11303
    [31] FANG H P. Ultrahigh density inside a nanobubble[J]. Science China Physics, Mechanics & Astronomy,2020,63(8):1-2.
    [32] 孙茹, 薛红俊.微纳米气泡技术在环保领域中的应用[J]. 石化技术,2021,28(4):61-62. doi: 10.3969/j.issn.1006-0235.2021.04.026

    SUN R, XUE H J. Analysis on the application of micro-nano bubble technology in environmental protection field[J]. Petrochemical Industry Technology,2021,28(4):61-62. doi: 10.3969/j.issn.1006-0235.2021.04.026
    [33] KYZAS G Z, BOMIS G, KOSHELEVA R I, et al. Nanobubbles effect on heavy metal ions adsorption by activated carbon[J]. Chemical Engineering Journal,2019,356:91-97. doi: 10.1016/j.cej.2018.09.019
    [34] 李婷竹, 郭冀峰, 王嘉琳, 等.微纳米气泡及其在环境工程领域的应用[J]. 净水技术,2021,40(2):88-92.

    LI T Z, GUO J F, WANG J L, et al. Micro and nano bubbles and the applications in environmental engineering[J]. Water Purification Technology,2021,40(2):88-92.
    [35] ZHANG H, LI P, ZHANG A, et al. Enhancing interface reactions by introducing microbubbles into a plasma treatment process for efficient decomposition of PFOA[J]. Environmental Science & Technology,2021,55(23):16067-16077.
    [36] 秦妍, 王巧芝, 赵会, 等.微/纳米气泡在多孔介质材料制备中的模板作用[J]. 中国科学:化学,2021,51(6):772-781. doi: 10.1360/SSC-2021-0009

    QIN Y, WANG Q Z, ZHAO H, et al. Micro/nano bubbles as templates in the preparation of porous materials[J]. Scientia Sinica Chimica),2021,51(6):772-781. doi: 10.1360/SSC-2021-0009
    [37] LYU T, WU S B, MORTIMER R J G, et al. Nanobubble technology in environmental engineering: revolutionization potential and challenges[J]. Environmental Science & Technology,2019,53(13):7175-7176.
    [38] 王逍遥, 王天泽, 周云鹏, 等.微纳米气泡水滴灌对设施甜瓜产量、品质及灌溉水利用效率的影响[J]. 灌溉排水学报,2021,40(1):38-46.

    WANG X Y, WANG T Z, ZHOU Y P, et al. Effects of oxygation with micro-nano air bubbles on yield, fruit quality and irrigation-water use efficiency of muskmelon[J]. Journal of Irrigation and Drainage,2021,40(1):38-46.
    [39] 傅开彬, 秦天邦, 徐信, 等.纳米气泡气浮应急修复铜离子污染土壤的工艺研究[J]. 矿冶工程,2021,41(1):54-58. doi: 10.3969/j.issn.0253-6099.2021.01.013

    FU K B, QIN T B, XU X, et al. Emergent remediation of copper ion contaminated soil adopting nano-bubble air flotation technique[J]. Mining and Metallurgical Engineering,2021,41(1):54-58. doi: 10.3969/j.issn.0253-6099.2021.01.013
    [40] 张伟, 刘少东, 张钰婷, 等.增氧灌溉技术研究现状与进展[J]. 现代化农业,2019(7):69-72. doi: 10.3969/j.issn.1001-0254.2019.07.037
    [41] ALUTHGUN-HEWAGE S, BATAGODA J H, MEEGODA J N. Remediation of contaminated sediments containing both organic and inorganic chemicals using ultrasound and ozone nanobubbles[J]. Environmental Pollution,2021,274:116538. doi: 10.1016/j.envpol.2021.116538
    [42] BATAGODA J H, HEWAGE S D A, MEEGODA J N. Remediation of heavy-metal-contaminated sediments in USA using ultrasound and ozone nanobubbles[J]. Journal of Environmental Engineering and Science,2019,14(2):130-138. doi: 10.1680/jenes.18.00012
    [43] WANG J, YUAN K W, WANG X Y, et al. Influence of krypton gas nanobubbles on the activity of pepsin[J]. Langmuir:the ACS Journal of Surfaces and Colloids,2020,36(46):14070-14075. doi: 10.1021/acs.langmuir.0c02635
    [44] 杨晓龙, 刘雯, 胡胜华, 等.微纳米曝气技术在环保领域的研究进展及应用[J]. 广东化工,2020,47(13):134-136. doi: 10.3969/j.issn.1007-1865.2020.13.060

    YANG X L, LIU W, HU S H, et al. Research progress and application of micro-nano aeration technology in environmental protection[J]. Guangdong Chemical Industry,2020,47(13):134-136. doi: 10.3969/j.issn.1007-1865.2020.13.060
    [45] 张立娟, 方海平, 胡钧.纳米气泡的科学之谜[J]. 物理,2018,47(9):574-583. doi: 10.7693/wl20180906

    ZHANG L J, FANG H P, HU J. Scientific mysteries of nanobubbles[J]. Physics,2018,47(9):574-583. doi: 10.7693/wl20180906
    [46] KE S, XIAO W, QUAN N N, et al. Formation and stability of bulk nanobubbles in different solutions[J]. Langmuir:the ACS Journal of Surfaces and Colloids,2019,35(15):5250-5256. doi: 10.1021/acs.langmuir.9b00144
    [47] BARAM S, WEINSTEIN M, EVANS J F, et al. Drip irrigation with nanobubble oxygenated treated wastewater improves soil aeration[J]. Scientia Horticulturae,2022,291:110550. doi: 10.1016/j.scienta.2021.110550
    [48] 钱银飞, 陈金, 邵彩虹, 等.不同类型水稻品种产量形成对微纳米气泡响应的差异[J]. 中国生态农业学报,2021,29(11):1893-1901.

    QIAN Y F, CHEN J, SHAO C H, et al. Effect of micro-nano bubbles on the yield of different rice types[J]. Chinese Journal of Eco-Agriculture,2021,29(11):1893-1901.
    [49] 李江, 潘艳川, 缴锡云, 等.加气灌溉对麦秸秆还田后土壤还原性与水稻生长的影响[J]. 农业机械学报,2021,52(9):250-259. doi: 10.6041/j.issn.1000-1298.2021.09.029

    LI J, PAN Y C, JIAO X Y, et al. Effects of aerated irrigation on rice growth and soil reducibility under wheat straw returning conditions[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(9):250-259. doi: 10.6041/j.issn.1000-1298.2021.09.029
    [50] WANG J F, CHEN J G, YU P P, et al. Oxygenation and synchronous control of nitrogen and phosphorus release at the sediment-water interface using oxygen nano-bubble modified material[J]. Science of the Total Environment,2020,725:138258. doi: 10.1016/j.scitotenv.2020.138258
    [51] ZHOU Y, LI Y, LIU X, et al. Synergistic improvement in spring maize yield and quality with micro/nanobubbles water oxygation[J]. Scientific Reports,2019,9:5226. doi: 10.1038/s41598-019-41617-z
    [52] MINAMIKAWA K, MAKINO T. Oxidation of flooded paddy soil through irrigation with water containing bulk oxygen nanobubbles[J]. Science of the Total Environment,2020,709:136323. doi: 10.1016/j.scitotenv.2019.136323
    [53] JIANG X Z, WANG W, YU G, et al. Contribution of nanobubbles for PFAS adsorption on graphene and OH- and NH2-functionalized graphene: comparing simulations with experimental results[J]. Environmental Science & Technology,2021,55(19):13254-13263.
    [54] JENKINS K B, MICHELSEN D L, NOVAK J T. Application of oxygen microbubbles for in situ biodegradation of p-xylene-contaminated groundwater in a soil column[J]. Biotechnology Progress,1993,9(4):394-400. doi: 10.1021/bp00022a006
    [55] FAN W, AN W G, HUO M X, et al. An integrated approach using ozone nanobubble and cyclodextrin inclusion complexation to enhance the removal of micropollutants[J]. Water Research,2021,196:117039. doi: 10.1016/j.watres.2021.117039
    [56] SUNG M, TENG C H, YANG T H. Dissolution enhancement and mathematical modeling of removal of residual trichloroethene in sands by ozonation during flushing with micro-nano-bubble solution[J]. Journal of Contaminant Hydrology,2017,202:1-10. doi: 10.1016/j.jconhyd.2017.03.008
    [57] GIACOLETTI A, CAPPELLO S, MANCINI G, et al. Predicting the effectiveness of oil recovery strategies in the marine polluted environment[J]. Journal of Environmental Management,2018,223:749-757.
    [58] CHOI H E, JUNG J H, HAN Y R, et al. A study on the treatment of oil contaminated soils with micro-nano bubbles soil washing system[J]. Journal of the Environmental Sciences,2011,20(10):1329-1336. doi: 10.5322/JES.2011.20.10.1329
    [59] 刘松玉, 詹良通, 胡黎明, 等.环境岩土工程研究进展[J]. 土木工程学报,2016,49(3):6-30.

    LIU S Y, ZHAN L T, HU L M, et al. Environmental geotechnics: state-of-the-art of theory, testing and application to practice[J]. China Civil Engineering Journal,2016,49(3):6-30.
    [60] JEONG S H, KIM D C, HAN J G. The fundamental study on th e soil remediation for copper contaminated soil using nanobubble water[J]. Journal of the Korean Geosynthetic Society,2017,16(1):31-39. doi: 10.12814/jkgss.2017.16.1.031
    [61] TANG Y, ZHANG M Y, ZHANG J, et al. Reducing arsenic toxicity using the interfacial oxygen nanobubble technology for sediment remediation[J]. Water Research,2021,205:117657. doi: 10.1016/j.watres.2021.117657
    [62] SHA Z M, CHEN Z, FENG Y F, et al. Minerals loaded with oxygen nanobubbles mitigate arsenic translocation from paddy soils to rice[J]. Journal of Hazardous Materials,2020,398:122818. doi: 10.1016/j.jhazmat.2020.122818
    [63] MINAMIKAWA K, TAKAHASHI M, MAKINO T, et al. Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy[J]. Environmental Research Letters,2015,10(8):084012. doi: 10.1088/1748-9326/10/8/084012
    [64] 南茜. 不同微灌加气设备运行效果试验研究[D]. 北京: 中国农业科学院, 2018.
    [65] WU Y C, LYU T, YUE B, et al. Enhancement of tomato plant growth and productivity in organic farming by agri-nanotechnology using nanobubble oxygation[J]. Journal of Agricultural and Food Chemistry,2019,67(39):10823-10831. doi: 10.1021/acs.jafc.9b04117
    [66] 曹雪松, 郑和祥, 佟长福, 等.微纳米气泡水地下滴灌对紫花苜蓿土壤酶活性与根系脯氨酸的影响[J]. 干旱地区农业研究,2020,38(4):67-73. doi: 10.7606/j.issn.1000-7601.2020.04.09

    CAO X S, ZHENG H X, TONG C F, et al. Effects of subsurface drip irrigation with micro-nano bubbled wateron soil enzyme activity and root prolineof alfalfa[J]. Agricultural Research in the Arid Areas,2020,38(4):67-73. doi: 10.7606/j.issn.1000-7601.2020.04.09
    [67] PAN G, MIAO X J, BI L, et al. Modified local soil (MLS) technology for harmful algal bloom control, sediment remediation, and ecological restoration[J]. Water,2019,11(6):1123. doi: 10.3390/w11061123
    [68] ZHANG H G, LYU T, BI L, et al. Combating hypoxia/anoxia at sediment-water interfaces: a preliminary study of oxygen nanobubble modified clay materials[J]. Science of the Total Environment,2018,637/638:550-560. doi: 10.1016/j.scitotenv.2018.04.284
    [69] JI X N, LIU C B, PAN G. Interfacial oxygen nanobubbles reduce methylmercury production ability of sediments in eutrophic waters[J]. Ecotoxicology and Environmental Safety,2020,188:109888. doi: 10.1016/j.ecoenv.2019.109888
    [70] XIAO Y, JIANG S C, WANG X Y, et al. Mitigation of biofouling in agricultural water distribution systems with nanobubbles[J]. Environment International,2020,141:105787. doi: 10.1016/j.envint.2020.105787
    [71] FU H M, PENG M W, YAN P, et al. Potential role of nanobubbles in dynamically modulating the structure and stability of anammox granular sludge within biological nitrogen removal process[J]. Science of the Total Environment,2021,784:147110. doi: 10.1016/j.scitotenv.2021.147110
    [72] 薛晓莉, 张慧娟, 杨文华, 等.微纳米气泡技术及其在农业领域的应用[J]. 农村科技,2017(8):65-68. doi: 10.3969/j.issn.1002-6193.2017.08.033
    [73] 薛晓莉, 林少航, 杨文华, 等.微纳米气泡臭氧水的制备及其对土壤和基质的消毒效果[J]. 蔬菜,2019(5):33-37.

    XUE X L, LIN S H, YANG W H, et al. Preparation of micro-nano bubble ozone water and its application on soil and matrix disinfection[J]. Vegetables,2019(5):33-37.
    [74] 安星辰, 宋卫堂, 何华名, 等.微/纳米气泡臭氧水对尖孢镰刀菌的杀灭效果研究[J]. 沈阳农业大学学报,2014,45(6):679-684. doi: 10.3969/j.issn.1000-1700.2014.06.007

    AN X C, SONG W T, HE H M, et al. Disinfection efficacy of micro/nano bubbles ozone water on F. Oxysporum f. sp. lycopeersici[J]. Journal of Shenyang Agricultural University,2014,45(6):679-684. doi: 10.3969/j.issn.1000-1700.2014.06.007
    [75] KHALESI M, VENKEN T, DECKERS S, et al. A novel method for hydrophobin extraction using CO2 foam fractionation system[J]. Industrial Crops and Products,2013,43:372-377. □ doi: 10.1016/j.indcrop.2012.06.048
  • 加载中
图(5)
计量
  • 文章访问数:  618
  • HTML全文浏览量:  390
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-30

目录

    /

    返回文章
    返回