留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市绿地及其溢出效应对PM2.5浓度影响研究

王丽宸 董冬 顾康康 罗毅

王丽宸,董冬,顾康康,等.城市绿地及其溢出效应对PM2.5浓度影响研究:以合肥市主城区为例[J].环境工程技术学报,2023,13(1):122-128 doi: 10.12153/j.issn.1674-991X.20210866
引用本文: 王丽宸,董冬,顾康康,等.城市绿地及其溢出效应对PM2.5浓度影响研究:以合肥市主城区为例[J].环境工程技术学报,2023,13(1):122-128 doi: 10.12153/j.issn.1674-991X.20210866
WANG L C,DONG D,GU K K,et al.Study on the influence of urban green space and its spillover effect on PM2.5 concentration: a case of urban districts of Hefei City[J].Journal of Environmental Engineering Technology,2023,13(1):122-128 doi: 10.12153/j.issn.1674-991X.20210866
Citation: WANG L C,DONG D,GU K K,et al.Study on the influence of urban green space and its spillover effect on PM2.5 concentration: a case of urban districts of Hefei City[J].Journal of Environmental Engineering Technology,2023,13(1):122-128 doi: 10.12153/j.issn.1674-991X.20210866

城市绿地及其溢出效应对PM2.5浓度影响研究—以合肥市主城区为例

doi: 10.12153/j.issn.1674-991X.20210866
基金项目: 安徽省自然科学基金项目(2008085QC132);安徽省高等学校科学研究重点项目(2022AH050244);安徽建筑大学引进人才(博士)科研启动项目(2020QDZ26)
详细信息
    作者简介:

    王丽宸(1996—),女,硕士研究生,主要从事城市规划与设计研究,wanglichen1996@163.com

    通讯作者:

    顾康康(1982—),男,教授,博士,主要从事城乡生态规划研究,kangkanggu@163.com

  • 中图分类号: X513

Study on the influence of urban green space and its spillover effect on PM2.5 concentration: a case of urban districts of Hefei City

  • 摘要:

    为探究城市绿地及其溢出效应对 PM2.5 浓度的影响,利用2018年合肥市主城区的遥感影像和PM2.5栅格数据,通过PM2.5浓度空间分布自相关分析将城市划分为HH(high-high)效应区、LL(low-low)效应区和无明显效应区3个区域。根据绿地解译和筛选得到研究绿地,通过ArcGIS软件对PM2.5栅格数据进行空间统计,并利用SPSS软件进行相关分析和回归分析。结果表明:不同区域绿地的溢出效应对PM2.5浓度的影响不同,在HH效应区内随距离增加PM2.5平均浓度减小,在LL效应区内随距离增加PM2.5平均浓度增加;不同区域绿地指标对PM2.5浓度变化的影响效应不同,在LL效应区归一化植被指数(NDVIg)对PM2.5浓度变化影响最大,在HH效应区和无明显效应区绿地面积指数(Sg)对PM2.5浓度变化影响最大。

     

  • 图  1  合肥市主城区PM2.5浓度空间分布

    Figure  1.  Spatial distribution of PM2.5 in major urban districts of Hefei

    图  2  合肥市主城区PM2.5浓度自相关分析

    Figure  2.  Autocorrelation analysis of PM2.5 in the main urban districts of Hefei

    图  3  不同PM2.5效应区绿地分布情况

    Figure  3.  Distribution of green spaces in different PM2.5 effect areas

    图  4  不同区域绿地外围PM2.5平均浓度变化曲线

    Figure  4.  Variation curves of average concentration of PM2.5 outside green spaces in different areas

    表  1  绿地空间形态与景观构成指标

    Table  1.   Spatial form and landscape component index of green space

    类别指标计算公式单位取值
    空间形态
    面积指数(SgSg=Ag/10 000hm2>0
    周长指数(CgCg=Pgm>0
    形状指数(LSIgLSIg=0.25Pg/Ag1/2≥1
    分维数(FDIgFDIg=2ln(Pg/k)/ln Ag1~2
    近圆形形状指数(RCCgRCCg=1−Ag/Ag'0~1
    景观构成归一化植被
    指数(NDVIg
    NDVIg=(NIR−R)/
    (NIR+R)
    0~1
    水体面积占比(PWgPWg=Aw/Ag0~1
      注:Ag为绿地面积,m2Pg为绿地周长,m;k为常数;Ag'为最小外接圆面积,m2Aw为水面面积,m2;NIR为红外波段的像素值;R为红光波段的像素值。
    下载: 导出CSV

    表  2  不同区域绿地数量

    Table  2.   Amount of green space in different areas

    PM2.5效应区绿地编号绿地数量/块
    HH效应区2、3、4、6、14、15、167
    LL效应区8、9、10、11、185
    无明显效应区1、5、7、12、13、176
      注:各绿地面积大于4 hm2
    下载: 导出CSV

    表  3  距离与绿地外围PM2.5平均浓度相关性分析

    Table  3.   Correlation analysis between distance and average concentration of PM2.5 outside green spaces

    HH
    效应区
    绿地2绿地3绿地4绿地6绿地14绿地15绿地16
    −0.461−0.971**−0.792**−0.981**−0.997**−0.996**−0.994**
    LL
    效应区
    绿地8 绿地9 绿地10 绿地11 绿地18
    0.996** 0.999** 0.907** 0.985** 0.783**
    无明显
    效应区
    绿地1 绿地5 绿地7 绿地12 绿地13 绿地17
    0.999** 0.998** −0.748* 1.000** −0.979** 0.999**
      注:**表示在0.01水平(双侧)显著相关;*表示在0.05水平(双侧)显著相关。
    下载: 导出CSV

    表  4  绿地指标与PM2.5浓度变化的相关性

    Table  4.   Correlation between green space index and PM2.5 concentration

    效应区SgCgLSIgFDIgRCCgNDVIgPWg
    HH
    效应区
    内部 0.916** 0.895** 0.021 −0.114 −0.165 0.125 −0.449
    外围 0.904** 0.918** 0.246 0.114 −0.081 0.207 −0.404
    LL
    效应区
    内部 0.292 0.318 −0.151 −0.232 0.308 −0.340 −0.879
    外围 0.341 0.388 −0.038 −0.139 0.270 −0.444 −0.362
    无明显
    效应区
    内部 −0.846* −0.962** −0.331 −0.163 −0.119 −0.266 0.895
    外围 −0.756 −0.830* −0.224 −0.071 −0.132 −0.187 0.894
      注:同表3。
    下载: 导出CSV

    表  5  PM2.5浓度影响因素相关性分析

    Table  5.   Correlation analysis of influencing factors of PM2.5 concentration

    影响因素SgCgLSIgFDIgRCCgNDVIg
    Cg0.820**
    LSIg−0.0590.375
    FDIg−0.2330.1140.948**
    RCCg−0.321−0.0550.574*0.608**
    NDVIg0.015−0.199−0.0050.1360.338
    PWg−0.226−0.177−0.133−0.125−0.338−0731**
      注:同表3。
    下载: 导出CSV

    表  6  PM2.5浓度变化量与各影响因素最适模型

    Table  6.   Optimum model of PM2.5 concentration variation and influencing factors

    效应区最适模型
    HH效应区内部Y1=−0.010+0.002Sg−0.091LSIg+0.860NDVIg
    外部Y2=−0.139+0.001Sg+0.044LSIg+0.594NDVIg
    LL效应区内部Y3=0.237−0.001Sg−0.025LSIg−1.015NDVIg
    外部Y4=0.258−0.001Sg+0.031LSIg−1.397NDVIg
    无明显效应区内部Y5=0.135−0.000 253Sg−0.129LSIg+0.153NDVI
    外部Y6=−0.002−0.000 101Sg−0.037LSIg+0.206NDVIg
    下载: 导出CSV
  • [1] 王橹玺, 李慧, 张文杰, 等.大气PM2.5载带重金属的区域污染特征研究[J]. 环境科学研究,2021,34(4):849-862.

    WANG L X, LI H, ZHANG W J, et al. Regional pollution characteristics of heavy metals in PM2.5[J]. Research of Environmental Sciences,2021,34(4):849-862.
    [2] LI Y, LIAO Q, ZHAO X G, et al. Premature mortality attributable to PM2.5 pollution in China during 2008-2016: underlying causes and responses to emission reductions[J]. Chemosphere,2021,263:127925. doi: 10.1016/j.chemosphere.2020.127925
    [3] 蔡宁宁, 王宝庆, 胡新鑫, 等.室内人体行走引起颗粒物再悬浮的试验研究[J]. 环境科学研究,2021,34(3):766-771. doi: 10.13198/j.issn.1001-6929.2020.09.03

    CAI N N, WANG B Q, HU X X, et al. Experimental study of human walking-induced indoor particle resuspension[J]. Research of Environmental Sciences,2021,34(3):766-771. doi: 10.13198/j.issn.1001-6929.2020.09.03
    [4] XING Y F, XU Y H, SHI M H, et al. The impact of PM2.5 on the human respiratory system[J]. Journal of Thoracic Disease,2016,8(1):E69-E74.
    [5] ZHANG D T, TIAN Y H, ZHANG Y, et al. Fine particulate air pollution and hospital utilization for upper respiratory tract infections in Beijing, China[J]. International Journal of Environmental Research and Public Health,2019,16(4):533. doi: 10.3390/ijerph16040533
    [6] 李超群, 钟梦莹, 武瑞鑫, 等.常见地被植物叶片特征及滞尘效应研究[J]. 生态环境学报,2015,24(12):2050-2055. doi: 10.16258/j.cnki.1674-5906.2015.12.020

    LI C Q, ZHONG M Y, WU R X, et al. Study on leaf characteristics and dust-capturing capability of common ground cover plants[J]. Ecology and Environmental Sciences,2015,24(12):2050-2055. doi: 10.16258/j.cnki.1674-5906.2015.12.020
    [7] ERKEBAEV T, ATTOKUROV K, SATTAROV A, et al. Dust retention ability of plants as a factor improving environment air[J]. American Journal of Plant Sciences,2021,12(2):187-198. doi: 10.4236/ajps.2021.122011
    [8] 殷卓君, 沈小雪, 李瑞利, 等.深圳市常见园林植物滞尘效应研究[J]. 北京大学学报(自然科学版),2020,56(6):1081-1090. doi: 10.13209/j.0479-8023.2020.096

    YIN Z J, SHEN X X, LI R L, et al. Study on the dust retention effect of common garden plants in Shenzhen[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2020,56(6):1081-1090. doi: 10.13209/j.0479-8023.2020.096
    [9] RUI L Y, BUCCOLIERI R, GAO Z, et al. The impact of green space layouts on microclimate and air quality in residential districts of Nanjing, China[J]. Forests,2018,9(4):224. doi: 10.3390/f9040224
    [10] 戴菲, 陈明, 王敏, 等.城市街区形态对PM10、PM2.5的影响研究: 以武汉为例[J]. 中国园林,2020,36(3):109-114.

    DAI F, CHEN M, WANG M, et al. Effect of urban block form on reducing particulate matter: a case study of Wuhan[J]. Chinese Landscape Architecture,2020,36(3):109-114.
    [11] 张进, 陈健.高交通密度道路周边乔灌草型绿地对大气颗粒物的影响[J]. 环境污染与防治,2019,41(9):1094-1097. doi: 10.15985/j.cnki.1001-3865.2019.09.017

    ZHANG J, CHEN J. The effect of arbor-shrub-grass green space on atmospheric particulate matters around high traffic density road[J]. Environmental Pollution & Control,2019,41(9):1094-1097. doi: 10.15985/j.cnki.1001-3865.2019.09.017
    [12] 王科朴, 张语克, 刘雪华.北京城市绿地对大气颗粒物的削减量计算[J]. 环境科学与技术,2020,43(4):121-129. doi: 10.19672/j.cnki.1003-6504.2020.04.018

    WANG K P, ZHANG Y K, LIU X H. Modeled particulate matters removal by urban green lands in Beijing[J]. Environmental Science & Technology,2020,43(4):121-129. doi: 10.19672/j.cnki.1003-6504.2020.04.018
    [13] 佘欣璐, 高吉喜, 张彪.基于城市绿地滞尘模型的上海市绿色空间滞留PM2.5功能评估[J]. 生态学报,2020,40(8):2599-2608.

    SHE X L, GAO J X, ZHANG B. PM2.5 removal service of green spaces in Shanghai based on the dust retention simulation on urban vegetation[J]. Acta Ecologica Sinica,2020,40(8):2599-2608.
    [14] CAI L Y, ZHUANG M Z, REN Y. A landscape scale study in Southeast China investigating the effects of varied green space types on atmospheric PM2.5 in mid-winter[J]. Urban Forestry & Urban Greening,2020,49:126607.
    [15] 戴菲, 毕世波, 孙培源.PM2.5消减效应导向下的城市绿色基础设施网络优化: 以湖北省武汉市江汉区为例[J]. 风景园林,2020,27(10):51-56.

    DAI F, BI S B, SUN P Y. Urban green infrastructure network optimization guided by PM2.5 reduction effect: a case study of Jianghan District, Wuhan City, Hubei Province[J]. Landscape Architecture,2020,27(10):51-56.
    [16] JEANJEAN A P R, BUCCOLIERI R, EDDY J, et al. Air quality affected by trees in real street canyons: the case of Marylebone neighbourhood in central London[J]. Urban Forestry & Urban Greening,2017,22:41-53.
    [17] 屈海燕, 宋迪, 刘凌汉, 等.庭院乔木对PM2.5污染分布影响的模拟分析[J]. 沈阳建筑大学学报(自然科学版),2019,35(6):1127-1135.

    QU H Y, SONG D, LIU L H, et al. Simulation for the effect of courtyard plants on PM2.5 pollution distribution[J]. Journal of Shenyang Jianzhu University (Natural Science),2019,35(6):1127-1135.
    [18] 孙志红, 王亚青.金融集聚对区域经济增长的空间溢出效应研究: 基于西北五省数据[J]. 审计与经济研究,2017,32(2):108-118.

    SUN Z H, WANG Y Q. The study of spatial spillover effects of financial agglomeration on regional economic growth: based on the data of five northwestern provinces[J]. Journal of Audit & Economics,2017,32(2):108-118.
    [19] HAMMER M S, van DONKELAAR A, LI C, et al. Global estimates and long-term trends of fine particulate matter concentrations (1998-2018)[J]. Environmental Science & Technology,2020,54(13):7879-7890.
    [20] 陈明, 胡义, 戴菲.城市绿地空间形态对PM2.5的消减影响: 以武汉市为例[J]. 风景园林,2019,26(12):74-78.

    CHEN M, HU Y, DAI F. Influence of urban green space forms on PM2.5 reduction: a case study of Wuhan[J]. Landscape Architecture,2019,26(12):74-78.
    [21] 邱媛, 管东生, 宋巍巍, 等.惠州城市植被的滞尘效应[J]. 生态学报,2008,28(6):2455-2462. doi: 10.3321/j.issn:1000-0933.2008.06.003

    QIU Y, GUAN D S, SONG W W, et al. The dust retention effect of urban vegetation in Huizhou, Guangdong Province[J]. Acta Ecologica Sinica,2008,28(6):2455-2462. doi: 10.3321/j.issn:1000-0933.2008.06.003
    [22] 陈博. 北京地区典型城市绿地对PM2.5等颗粒物浓度及化学组成影响研究[D]. 北京: 北京林业大学, 2016.
    [23] 李新宇, 赵松婷, 李延明, 等.北京市不同主干道绿地群落对大气PM2.5浓度消减作用的影响[J]. 生态环境学报,2014,23(4):615-621. doi: 10.3969/j.issn.1674-5906.2014.04.012

    LI X Y, ZHAO S T, LI Y M, et al. Subduction effect of urban arteries green space on atmospheric concentration of PM2.5 in Beijing[J]. Ecology and Environmental Sciences,2014,23(4):615-621. doi: 10.3969/j.issn.1674-5906.2014.04.012
    [24] 宋晓晖, 毕晓辉, 吴建会, 等.杭州市空气颗粒物污染特征及变化规律研究[J]. 环境污染与防治,2012,34(7):60-63. doi: 10.3969/j.issn.1001-3865.2012.07.013

    SONG X H, BI X H, WU J H, et al. Study on the characters and variation of ambient particulate matter pollution in Hangzhou[J]. Environmental Pollution & Control,2012,34(7):60-63. doi: 10.3969/j.issn.1001-3865.2012.07.013
    [25] 顾康康, 钱兆, 方云皓, 等.基于ENVI-met的城市道路绿地植物配置对PM2.5的影响研究[J]. 生态学报,2020,40(13):4340-4350.

    GU K K, QIAN Z, FANG Y H, et al. Influence of vegetation arrangement on PM2.5 in urban roadside based on ENVI-met[J]. Acta Ecologica Sinica,2020,40(13):4340-4350.
    [26] 李新宇, 赵松婷, 许蕊, 等.园林植物对大气细颗粒物浓度的正负作用评价[J]. 农学学报,2019,9(11):44-49. doi: 10.11923/j.issn.2095-4050.cjas20190500050

    LI X Y, ZHAO S T, XU R, et al. Positive and negative effects of landscape plants on atmospheric fine particulate matter concentration[J]. Journal of Agriculture,2019,9(11):44-49. doi: 10.11923/j.issn.2095-4050.cjas20190500050
    [27] 王扶潘, 朱乔, 冯凝, 等.深圳大气中VOCs的二次有机气溶胶生成潜势[J]. 中国环境科学,2014,34(10):2449-2457.

    WANG F P, ZHU Q, FENG N, et al. The generation potential of secondary organic aerosol of atmospheric VOCs in Shenzhen[J]. China Environmental Science,2014,34(10):2449-2457.
    [28] 陈文泰, 邵敏, 袁斌, 等.大气中挥发性有机物(VOCs)对二次有机气溶胶(SOA)生成贡献的参数化估算[J]. 环境科学学报,2013,33(1):163-172. doi: 10.13671/j.hjkxxb.2013.01.026

    CHEN W T, SHAO M, YUAN B, et al. Parameterization of contribution to secondary organic aerosol (SOA) formation from ambient volatile organic compounds (VOCs)[J]. Acta Scientiae Circumstantiae,2013,33(1):163-172. doi: 10.13671/j.hjkxxb.2013.01.026
    [29] 马超, 薛志钢, 李树文, 等.VOCs排放、污染以及控制对策[J]. 环境工程技术学报,2012,2(2):103-109. doi: 10.3969/j.issn.1674-991X.2012.02.016

    MA C, XUE Z G, LI S W, et al. VOCs emission, pollution and control measures[J]. Journal of Environmental Engineering Technology,2012,2(2):103-109. doi: 10.3969/j.issn.1674-991X.2012.02.016
    [30] WEITKAMP E A, SAGE A M, PIERCE J R, et al. Organic aerosol formation from photochemical oxidation of diesel exhaust in a smog chamber[J]. Environmental Science & Technology,2007,41(20):6969-6975.
    [31] GRIESHOP A P, LOGUE J M, DONAHUE N M, et al. Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of organic aerosol evolution[J]. Atmospheric Chemistry and Physics,2009,9(4):1263-1277. doi: 10.5194/acp-9-1263-2009
    [32] 张鑫. 南京城市道路绿地对PM2.5扩散影响研究[D]. 南京林业大学, 2018.
    [33] 周亚端, 朱宽广, 黄凡, 等. 新冠肺炎疫情期间湖北省大气污染物减排效果评估[J]. 环境科学与技术, 2020, 43(3): 228-236.

    ZHOU Y D, ZHU K G, HUANG F, et al. Emission reductions and air quality improvements during the COVID-19 pandemic in Hubei Province[J]. Environmental Science and Technology, 2020, 43(3): 228-236.
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  162
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-29

目录

    /

    返回文章
    返回