留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太湖湖滨带水向辐射带水生植物多样性及生境因子分析

蔡天祎 叶春 李春华 魏伟伟 朱琦

蔡天祎,叶春,李春华,等.太湖湖滨带水向辐射带水生植物多样性及生境因子分析[J].环境工程技术学报,2023,13(1):164-170 doi: 10.12153/j.issn.1674-991X.20210733
引用本文: 蔡天祎,叶春,李春华,等.太湖湖滨带水向辐射带水生植物多样性及生境因子分析[J].环境工程技术学报,2023,13(1):164-170 doi: 10.12153/j.issn.1674-991X.20210733
CAI T Y,YE C,LI C H,et al.Analysis on aquatic macrophyte diversity and environmental factors within the radiant belt toward lake of lake-terrestrial ecotone in Lake Taihu[J].Journal of Environmental Engineering Technology,2023,13(1):164-170 doi: 10.12153/j.issn.1674-991X.20210733
Citation: CAI T Y,YE C,LI C H,et al.Analysis on aquatic macrophyte diversity and environmental factors within the radiant belt toward lake of lake-terrestrial ecotone in Lake Taihu[J].Journal of Environmental Engineering Technology,2023,13(1):164-170 doi: 10.12153/j.issn.1674-991X.20210733

太湖湖滨带水向辐射带水生植物多样性及生境因子分析

doi: 10.12153/j.issn.1674-991X.20210733
基金项目: 国家水体污染控制与治理科技重大专项(2012ZX07101-009);生态空间管控技术转化推广项目(2020-JY-018)
详细信息
    作者简介:

    蔡天祎(1997—),女,硕士研究生,主要研究方向为湖泊水生态,cai_tianyi2021@163.com

    通讯作者:

    叶春(1970—),男,研究员,博士,主要研究方向为湖泊水生态,yechbj@163.com

  • 中图分类号: X524,X173

Analysis on aquatic macrophyte diversity and environmental factors within the radiant belt toward lake of lake-terrestrial ecotone in Lake Taihu

  • 摘要:

    水生植物是湖滨带水向辐射带的重要组成部分。基于2021年春季和夏季太湖湖滨带水向辐射带内水生植物调查结果,采用相关性分析和典范对应分析等方法,对水生植物分布及相应生境因子进行分析,探究其演变特征。结果表明:1)2次调查共记录太湖湖滨带水向辐射带内水生植物12种,分别属于7科9属,其中浮叶植物3种,沉水植物9种;2)相关性分析结果表明,春季水生植物群落的Alpha多样性指数与生境因子相关性不显著,夏季水生植物群落的Alpha多样性指数与水体溶解氧浓度呈极显著正相关,与透明度、透明度/水深(透明度和水深的比值)呈显著正相关,Shannon-Wiener指数、Margelef指数与总氮浓度呈显著负相关;3)典范对应分析结果表明,水体溶解氧浓度对调查结果的解释值最大,随后依次为透明度/水深以及水深。10个生境因子对水生植物分布的总解释值较低;4)与历史数据相比,本次调查结果的水生植物多样性降低且优势物种单一化,表明太湖湖滨带水向辐射带内水生植物群落结构和多样性水平受人类活动和环境因子影响较大。水生植物自然恢复周期较长,人为调控其群落结构和多样性是当前推动太湖水生植物恢复的关键。

     

  • 图  1  太湖湖滨带水向辐射带水生植物采样点示意

    Figure  1.  Schematic diagram of sampling points in radiant belt toward lake of lake-terrestrial ecotone in Lake Taihu

    图  2  不同季节水向辐射带水生植物群落的Alpha多样性指数特征

    Figure  2.  Alpha diversity index of aquatic macrophyte within radiant belt toward lake in different seasons

    图  3  太湖湖滨带水向辐射带内水生植物与生境因子的排序

    Figure  3.  Sorting of aquatic macrophyte and environmental factors within radiant belt toward lake of lake-terrestrial ecotone in Lake Taihu

    图  4  太湖湖滨带水向辐射带内水生植物物种数变化

    Figure  4.  Changes in species of aquatic macrophyte within radiant belt toward lake of lake-terrestrial ecotone in Lake Taihu

    表  1  太湖湖滨带水向辐射带水生植物调查结果

    Table  1.   Survey data of aquatic macrophyte within radiant belt toward lake of lake-terrestrial ecotone in Lake Taihu

    生态型春季
    结果
    夏季
    结果
    龙胆科莕菜属荇菜(Nymphoieds peltatum)浮叶++
    莕菜属金银莲花(Nymphoieds indica)浮叶 +
    菱科菱属细果野菱(Trapa maximowiczii)浮叶*+
    眼子菜科眼子菜属菹草(Potamogeton crispus)沉水++
    眼子菜属马来眼子菜(Potamogeton malainus)沉水++
    眼子菜属微齿眼子菜(Potamogeton maackianus沉水++
    小二仙
    草科
    狐尾藻属穗花狐尾藻(Myriophyllum spicatum沉水++
    金鱼藻科金鱼藻属金鱼藻(Ceratophyllum demersum)沉水++
    水鳖科黑藻属轮叶黑藻(Hydirlla verticillata沉水++
    苦草属苦草(Vallisneria natans)沉水++
    水蕴藻属伊乐藻(Elodea nuttali)沉水+
    茨藻科茨藻属大茨藻(Najas marina)沉水+
      注:+为采集到;*为细果野菱在春季调查时只见果实,由于数量较多(密度>10个/m2),故仍记为采集到细果野菱。
    下载: 导出CSV

    表  2  不同湖区水向辐射带水生植物群落的Alpha多样性指数特征

    Table  2.   Alpha diversity index of aquatic macrophyte community within radiant belt toward lake in different lake areas

    湖区DHd
    数值CV/%数值CV/%数值CV/%
    贡湖
    东部沿岸区
    东太湖
    0.56±0.12
    0.61±0.12
    0.65±0.17
    21.43
    19.67
    26.15
    0.96±0.23
    1.07±0.34
    1.09±0.33
    23.96
    31.77
    30.28
    0.62±0.15
    0.81±0.31
    1.11±0.48
    24.19
    38.27
    43.24
      注:表中DHd数值为mean±sd。
    下载: 导出CSV

    表  3  2次调查主要生境因子数据统计

    Table  3.   Data statistics of main environmental factors in 2 field surveys mg/L 

    季节 CODMn NH4 +-N浓度 TN浓度 TP浓度
    春季 最大值 14.67 2.86 7.35 0.13
    最小值 1.47 0.29 0.43 0.02
    平均值 5.67 0.56 1.36 0.04
    夏季 最大值 19.17 2.86 7.46 0.48
    最小值 3.73 0.01 0.24 0.01
    平均值 8.92 0.36 1.78 0.04
    下载: 导出CSV

    表  4  春季、夏季水生植物群落的Alpha多样性指数与生境因子相关性分析结果

    Table  4.   Correlation analysis between Alpha diversity indexes of aquatic macrophyte community and environmental factors during spring and summer

    季节Alpha多样性指数pHDO水深透明度透明度/水深CODMnNH4 +-NNO3 -NTNTP
    春季D0.620.720.360.460.17−0.53−0.18−0.09−0.36−0.46
    H0.560.740.550.630.35−0.44−0.17−0.14−0.48−0.51
    d0.500.520.570.650.46−0.420.01−0.38−0.68−0.26
    夏季D0.190.92**0.070.55*0.56*0.04−0.17−0.1−0.360.14
    H0.280.94**0.120.59*0.59*0.07−0.28−0.25−0.54*0.24
    d0.310.88**0.100.59*0.58*0.15−0.25−0.27−0.55*0.35
      注:*表示相关性显著(P<0.05); **表示相关性极显著(P<0.01)。
    下载: 导出CSV

    表  5  太湖湖滨带水向辐射带内水生植物与生境因子的CCA排序分析参数

    Table  5.   Parameters of CCA sorting analysis of aquatic macrophyte and environmental factors within radiant belt toward lake of lake-terrestrial ecotone in Lake Taihu

    统计轴特征值物种数据方差/%物种-环境相关性物种-环境关系/%
    第1轴 0.385 4 12.58 0.824 1 50.50
    第2轴 0.123 1 16.60 0.634 4 66.63
    第3轴 0.099 9 19.86 0.561 7 79.72
    第4轴 0.091 0 22.83 0.557 0 91.64
    下载: 导出CSV
  • [1] SCHEFFER M, CARPENTER S, FOLEY J A, et al. Catastrophic shifts in ecosystems[J]. Nature,2001,413(6856):591-596. doi: 10.1038/35098000
    [2] 王友文, 徐杰, 李继影, 等.东太湖围网全面拆除前后水生植被及水质变化[J]. 生态与农村环境学报,2022,38(1):104-111. doi: 10.19741/j.issn.1673-4831.2020.0986

    WANG Y W, XU J, LI J Y, et al. Changes of aquatic vegetation and water quality after removal of pen aquaculture in lake east Taihu[J]. Journal of Ecology and Rural Environment,2022,38(1):104-111. doi: 10.19741/j.issn.1673-4831.2020.0986
    [3] 邵凯迪, 段婧婧, 薛利红, 等.5种水生植物对模拟菜地径流中总氮和硝氮净化效果[J]. 环境工程技术学报,2020,10(3):406-413. doi: 10.12153/j.issn.1674-991X.20190160

    SHAO K D, DUAN J J, XUE L H, et al. Purification effect of five kinds of hydrophytes on total nitrogen and nitrate in simulated vegetable field runoff water[J]. Journal of Environmental Engineering Technology,2020,10(3):406-413. doi: 10.12153/j.issn.1674-991X.20190160
    [4] 张瑞斌.不同水生植物对污水处理厂尾水的生态净化效果分析[J]. 环境工程技术学报,2015,5(6):504-508. doi: 10.3969/j.issn.1674-991X.2015.06.079

    ZHANG R B. Ecological purification efficiency of several aquatic plants on tail water of sewage treatment plant[J]. Journal of Environmental Engineering Technology,2015,5(6):504-508. doi: 10.3969/j.issn.1674-991X.2015.06.079
    [5] LI J H, YANG X Y, WANG Z F, et al. Comparison of four aquatic plant treatment systems for nutrient removal from eutrophied water[J]. Bioresource Technology,2015,179:1-7. doi: 10.1016/j.biortech.2014.11.053
    [6] 朱天菊, 王兵, 谢红丽, 等.土著水生植物对页岩气钻井废水中Cu和Pb的去除及富集特征[J]. 环境科学研究,2017,30(3):478-483. doi: 10.13198/j.issn.1001-6929.2017.01.22

    ZHU T J, WANG B, XIE H L, et al. Degradation and bioconcentration effects of aquatic plants on Cu/Pb in wastewater during drilling of shale gas[J]. Research of Environmental Sciences,2017,30(3):478-483. doi: 10.13198/j.issn.1001-6929.2017.01.22
    [7] 黄亮, 李伟, 吴莹, 等.长江中游若干湖泊中水生植物体内重金属分布[J]. 环境科学研究,2002,15(6):1-4. doi: 10.3321/j.issn:1001-6929.2002.06.001

    HUANG L, LI W, WU Y, et al. Distribution of heavy metals in aquatic plants of some lakes in the middle reach of the Yangtze River[J]. Research of Environmental Sciences,2002,15(6):1-4. doi: 10.3321/j.issn:1001-6929.2002.06.001
    [8] XING W, WU H P, HAO B B, et al. Bioaccumulation of heavy metals by submerged macrophytes: looking for hyperaccumulators in eutrophic lakes[J]. Environmental Science & Technology,2013,47(9):4695-4703.
    [9] 展海银, 周启星.环境中四环素类抗生素污染处理技术研究进展[J]. 环境工程技术学报,2021,11(3):571-581. doi: 10.12153/j.issn.1674-991X.20200154

    ZHAN H Y, ZHOU Q X. Research progress on treatment technology of tetracycline antibiotics pollution in the environment[J]. Journal of Environmental Engineering Technology,2021,11(3):571-581. doi: 10.12153/j.issn.1674-991X.20200154
    [10] ZHU L M, XU H T, XIAO W S, et al. Ecotoxicological effects of sulfonamide on and its removal by the submerged plant Vallisneria natans (Lour. ) Hara[J]. Water Research,2020,170:115354. doi: 10.1016/j.watres.2019.115354
    [11] RIFFE K C, HENDERSON S M, MULLARNEY J C. Wave dissipation by flexible vegetation[J]. Geophysical Research Letters,2011,38(18):L18607.
    [12] ANDERSON M E, SMITH J M. Wave attenuation by flexible, idealized salt marsh vegetation[J]. Coastal Engineering,2014,83:82-92. doi: 10.1016/j.coastaleng.2013.10.004
    [13] NOWACKI D J, BEUDIN A, GANJU N K. Spectral wave dissipation by submerged aquatic vegetation in a back-barrier estuary[J]. Limnology and Oceanography,2017,62(2):736-753. doi: 10.1002/lno.10456
    [14] 高永霞. 太湖生态恢复工程对底泥磷分布的影响研究[D]. 南京: 河海大学, 2007.
    [15] 叶春, 李春华, 邓婷婷.论湖滨带的结构与生态功能[J]. 环境科学研究,2015,28(2):171-181.

    YE C, LI C H, DENG T T. Structures and ecological functions of lake littoral zones[J]. Research of Environmental Sciences,2015,28(2):171-181.
    [16] GASITH A, GAFNY S. Effects of water level fluctuation on the structure and function of the littoral zone large lakes[M]. Heidelberg: Springer Berlin, 1990: 156-171.
    [17] 叶春, 李春华, 吴蕾, 等.湖滨带生态退化及其与人类活动的相互作用[J]. 环境科学研究,2015,28(3):401-407. doi: 10.13198/j.issn.1001-6929.2015.03.10

    YE C, LI C H, WU L, et al. Ecological degradation of lake littoral zone and interaction effects with human activities[J]. Research of Environmental Sciences,2015,28(3):401-407. doi: 10.13198/j.issn.1001-6929.2015.03.10
    [18] 中国科学院南京地理研究所. 太湖综合调查初步报告[M]. 北京: 科学出版社, 1965.
    [19] 曹萃禾.水生维管束植物在太湖生态系统中的作用[J]. 生态学杂志,1987,6(1):37-39.

    CAO C H. Effects of aquatic vascular plants on the Taihu Lake ecosystem[J]. Chinese Journal of Ecology,1987,6(1):37-39.
    [20] 张圣照, 王国祥, 濮培民, 等.东太湖水生植被及其沼泽化趋势[J]. 植物资源与环境,1999,8(2):1-6.

    ZHANG S Z, WANG G X, PU P M, et al. Succession of hydrophytic vegetation and swampy tendency in the East Taihu Lake[J]. Journal of Plant Resources and Environment,1999,8(2):1-6.
    [21] 赵凯. 太湖水生植被分布格局及演变过程[D]. 南京: 南京师范大学, 2017.
    [22] YE C, LI C H, YU H C, et al. Study on ecological restoration in near-shore zone of a eutrophic lake, Wuli Bay, Taihu Lake[J]. Ecological Engineering,2011,37(9):1434-1437. doi: 10.1016/j.ecoleng.2011.03.028
    [23] CHEN K N, XIANMIN B, SHI L X, et al. Ecological restoration engineering in Lake Wuli, Lake Taihu: a large enclosure experiment[J]. Journal of Lake Sciences,2006,18(2):139-149. doi: 10.18307/2006.0207
    [24] 姚程, 胡小贞, 姜霞, 等.太湖贡湖湾人工湖滨带水生植物恢复及其富营养化控制[J]. 湖泊科学,2021,33(6):1626-1638. doi: 10.18307/2021.0602

    YAO C, HU X Z, JIANG X, et al. Macrophytes restoration and its effects on eutrophication control in rehabilitated lakeshore zone of Gonghu Bay, Lake Taihu[J]. Journal of Lake Sciences,2021,33(6):1626-1638. doi: 10.18307/2021.0602
    [25] 谢洪民, 李启升, 刘帅领, 等.环太湖地区河道和湖泊沿岸带水生植物多样性现状调查[J]. 湖泊科学,2020,32(3):735-744. doi: 10.18307/2020.0313

    XIE H M, LI Q S, LIU S L, et al. Investigation on the status quo of aquatic plant biodiversity in the riverways and littoral zones of the Lake Taihu rim[J]. Journal of Lake Sciences,2020,32(3):735-744. doi: 10.18307/2020.0313
    [26] 黄晓艺, 胡湛波, 叶春, 等.太湖出入湖河口水质和水生植物中氮、磷含量及其相关性分析[J]. 环境工程,2019,37(9):74-80.

    HUANG X Y, HU Z B, YE C, et al. Nitrogen and phosphorus contents of aquatic plants and correlation analysis with water quality in confluence areas of rivers and lakes of Taihu Lake, China[J]. Environmental Engineering,2019,37(9):74-80.
    [27] 徐德瑞, 周杰, 张建华, 等.东太湖沉水植物现状及影响因子分析[J]. 水电能源科学,2020,38(4):64-67.

    XU D R, ZHOU J, ZHANG J H, et al. Status of submerged plants and its influencing factors in east Lake Taihu[J]. Water Resources and Power,2020,38(4):64-67.
    [28] 俞欣, 金哲, 朱亮, 等.玄武湖水生植物调查及影响因素[J]. 安徽农业科学,2020,48(24):81-86. doi: 10.3969/j.issn.0517-6611.2020.24.023

    YU X, JIN Z, ZHU L, et al. Aquatic plants investigation of Xuanwu Lake and its influence factors[J]. Journal of Anhui Agricultural Sciences,2020,48(24):81-86. doi: 10.3969/j.issn.0517-6611.2020.24.023
    [29] 客涵, 李秀启, 董贯仓, 等.南四湖敞水区水生植物群落物种多样性分析[J]. 山东农业大学学报(自然科学版),2018,49(3):408-413.

    KE H, LI X Q, DONG G C, et al. Diversity analysis of aquatic macrophytes in open water area of Nansi Lake[J]. Journal of Shandong Agricultural University (Natural Science Edition),2018,49(3):408-413.
    [30] 李宇辉, 郝涛, 龚旭昇, 等.新疆开都河流域水生植物多样性及其影响因素[J]. 应用生态学报,2020,31(5):1691-1698.

    LI Y H, HAO T, GONG X S, et al. Species richness and influencing factors of aquatic plant in the Kaidu River Basin, Xinjiang, China[J]. Chinese Journal of Applied Ecology,2020,31(5):1691-1698.
    [31] 年跃刚, 宋英伟, 李英杰, 等.富营养化浅水湖泊稳态转换理论与生态恢复探讨[J]. 环境科学研究,2006,19(1):67-70. doi: 10.3321/j.issn:1001-6929.2006.01.017

    NIAN Y G, SONG Y W, LI Y J, et al. Regime shift theory and ecological restoration discussion in eutrophic shallow lakes[J]. Research of Environmental Sciences,2006,19(1):67-70. doi: 10.3321/j.issn:1001-6929.2006.01.017
    [32] 刘倩, 李超, 徐军, 等.太湖流域湖荡湿地水生植物的分布特征[J]. 中国环境科学,2020,40(1):244-251. doi: 10.3969/j.issn.1000-6923.2020.01.027

    LIU Q, LI C, XU J, et al. Distribution characteristics of aquatic plants in the watershed of Lake Taihu[J]. China Environmental Science,2020,40(1):244-251. ◇ doi: 10.3969/j.issn.1000-6923.2020.01.027
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  302
  • HTML全文浏览量:  141
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-22

目录

    /

    返回文章
    返回