留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于“源-质”响应的香溪河流域问题解析

申振玲 周奉 孙溢点 张万顺 凌海波 王琪 李龙媛 杨丽娜

申振玲,周奉,孙溢点,等.基于“源-质”响应的香溪河流域问题解析[J].环境工程技术学报,2022,12(2):485-492 doi: 10.12153/j.issn.1674-991X.20210712
引用本文: 申振玲,周奉,孙溢点,等.基于“源-质”响应的香溪河流域问题解析[J].环境工程技术学报,2022,12(2):485-492 doi: 10.12153/j.issn.1674-991X.20210712
SHEN Z L,ZHOU F,SUN Y D,et al.Problems analysis based on the response of water quality to pollution sources in Xiangxi River Basin[J].Journal of Environmental Engineering Technology,2022,12(2):485-492 doi: 10.12153/j.issn.1674-991X.20210712
Citation: SHEN Z L,ZHOU F,SUN Y D,et al.Problems analysis based on the response of water quality to pollution sources in Xiangxi River Basin[J].Journal of Environmental Engineering Technology,2022,12(2):485-492 doi: 10.12153/j.issn.1674-991X.20210712

基于“源-质”响应的香溪河流域问题解析

doi: 10.12153/j.issn.1674-991X.20210712
基金项目: 国家自然科学基金项目(41877531);长江生态环境保护修复联合研究项目(第一期)(2019-LHYJ-01-0208-25)
详细信息
    作者简介:

    申振玲(1990—),女,博士研究生,研究方向为环境科学,shenzhenling@whu.edu.cn

    通讯作者:

    张万顺(1965—),男,教授,博士,研究方向为环境规划与管理,wszhang@whu.edu.cn

  • 中图分类号: X52

Problems analysis based on the response of water quality to pollution sources in Xiangxi River Basin

  • 摘要: 开展流域水环境问题症结分析,是支撑流域水生态环境修复治理和精准管控的关键途径。应用“空-地-水”一体化模型体系,面向香溪河流域构建了“源-质”响应关系模型,并进一步对该流域水环境问题开展定量精准解析。根据水质监测断面2019年实测数据进行模型验证,总氮(TN)、总磷(TP)浓度相对误差均在10%以内。结果表明,污水处理厂、工业源和畜禽养殖是造成香溪河水质污染和富营养化的3类主要污染源,总贡献率超过60%。对于泗湘溪断面,污水处理厂输出的TN、TP总量为193.28和40.51 t/a,工业源为226.25和31.69 t/a,畜禽养殖为187.75和29.82 t/a;对于长沙坝断面,污水处理厂输出的TN、TP总量为376.31和48.97 t/a,工业源为295.30和39.91 t/a,畜禽养殖为128.09和41.61 t/a。基于当前流域水环境综合治理的迫切需求,该流域未来应加大这3类污染源的截污控源力度。

     

  • 图  1  香溪河流域范围、土地利用类型及验证断面分布

    Figure  1.  Scope and landuse type of Xiangxi River Basin and distribution of its verification sections

    图  2  子流域划分

    注:数字为子流域编号。

    Figure  2.  Sub-watershed division

    图  3  河道汇流关系概化及关键断面所在位置

    Figure  3.  Generalization of river confluence relationship and location of key sections

    图  4  香溪河流域各污染源负荷核算

    Figure  4.  Load accounting of pollution sources in Xiangxi River Basin

    图  5  香溪河流域TN、TP污染负荷分布

    Figure  5.  Distribution of TN and TP pollution load in Xiangxi River Basin

    图  6  2019年不同排污条件下泗湘溪、长沙坝断面TN和TP逐日浓度变化

    Figure  6.  Daily variations of TN and TP concentrations in Sixiangxi and Changshaba sections under different sewage discharge conditions in 2019

    表  1  香溪河流域敏感参数取值

    Table  1.   Value of sensitive parameters in Xiangxi River Basin

    参数含义排序参数取值敏感度值
    RCN降水中氮浓度/(mg/L)143.31
    CN2径流曲线系数2702.99
    FILTERW田间过滤带宽度/m352.71
    SHALLST_N浅层含水层中的硝酸盐浓度/(mg/L)4102.12
    ALPHAA_BF基流退水常数/d50.031.97
    ESCO土壤蒸发补偿系数60.331.91
    GW_DELAY含水层补给的延迟时间/d751.85
    CDN反硝化作用速率系数80.011.52
    BC420 ℃时当地有机磷的成矿速率常数/d−190.70.88
    SDNCO能够发生反硝化作用的营养物质循环水因子的临界值100.650.87
    BC120 ℃时铵根离子的生物氧化速率常数/d−1110.30.81
    REVAPMN潜水蒸发时浅层含水层的水位阈值/mm11460.310.81
    PSP磷的可利用率指数130.70.76
    HLIFE_NGW浅层含水层中硝酸盐的半衰期/d−11410.68
    GW_SOLP地下水流中可溶性磷浓度/(mg/L)150.10.5
    RS520 ℃时当地有机磷的沉降速率常数/d−1160.10.34
    BC220 ℃时亚硝酸盐向硝酸盐转化的生物氧化速率常数/d−1171.20.28
    SURLAG地表径流的滞后系数188.220.23
    BC320 ℃时当地有机氮向铵根离子转化的生物氧化速率常数/d−1190.40.21
    下载: 导出CSV

    表  2  香溪河流域水文、水质率定验证

    Table  2.   Calibration and verification of hydrology and water quantity in Xiangxi River Basin

    类型站点名称率定期(2011—2012年)验证期(2019年)
    R2ENSR2ENS
    流量南阳0.710.680.750.60
    总氮泗湘溪0.830.720.790.71
    长沙坝0.960.840.840.80
    总磷泗湘溪0.840.620.780.61
    长沙坝0.860.650.820.63
    下载: 导出CSV

    表  3  各类污染源对断面TN和TP浓度的贡献率

    Table  3.   Contribution rate of pollution sources to TN and TP in different sections %

    水质断面污染源类型TNTP
    工业源29.2020.11
    污水处理厂24.7125.97
    泗湘溪畜禽养殖23.9518.86
    生活源10.7514.95
    农业源11.3920.11
    工业源24.9720.44
    污水处理厂32.2125.35
    长沙坝畜禽养殖22.3321.36
    生活源10.0216.26
    农业源10.4716.59
    下载: 导出CSV
  • [1] 谭志雄, 韩经纬, 陈思盈.重点流域水环境综合治理的实现路径与政策制度设计[J]. 环境生态学,2020,2(10):1-9.

    TAN Z X, HAN J W, CHEN S Y. Implementation path, policy and institution design of comprehensive governance of water environment in key drainage basins[J]. Environmental Ecology,2020,2(10):1-9.
    [2] 王浩, 贾仰文.变化中的流域“自然-社会”二元水循环理论与研究方法[J]. 水利学报,2016,47(10):1219-1226.

    WANG H, JIA Y W. Theory and study methodology of dualistic water cycle in river basins under changing conditions[J]. Journal of Hydraulic Engineering,2016,47(10):1219-1226.
    [3] XU J, JIN G Q, TANG H W, et al. Response of water quality to land use and sewage outfalls in different seasons[J]. Science of the Total Environment,2019,696:134014. doi: 10.1016/j.scitotenv.2019.134014
    [4] DAI X Y, ZHOU Y Q, MA W C, et al. Influence of spatial variation in land-use patterns and topography on water quality of the rivers inflowing to Fuxian Lake, a large deep lake in the plateau of southwestern China[J]. Ecological Engineering,2017,99:417-428. doi: 10.1016/j.ecoleng.2016.11.011
    [5] 程国栋, 肖洪浪, 傅伯杰, 等.黑河流域生态-水文过程集成研究进展[J]. 地球科学进展,2014,29(4):431-437. doi: 10.11867/j.issn.1001-8166.2014.04.0431

    CHENG G D, XIAO H L, FU B J, et al. Advances in synthetic research on the eco-hydrological process of the Heihe River Basin[J]. Advances in Earth Science,2014,29(4):431-437. doi: 10.11867/j.issn.1001-8166.2014.04.0431
    [6] 傅伯杰.新时代自然地理学发展的思考[J]. 地理科学进展,2018,37(1):1-7. doi: 10.18306/dlkxjz.2018.01.001

    FU B J. Thoughts on the recent development of physical geography[J]. Progress in Geography,2018,37(1):1-7. doi: 10.18306/dlkxjz.2018.01.001
    [7] 张万顺, 王浩.流域水环境水生态智慧化管理云平台及应用[J]. 水利学报,2021,52(2):142-149.

    ZHANG W S, WANG H. Cloud platform and application of watershed water environment and aquatic ecology intelligent management[J]. Journal of Hydraulic Engineering,2021,52(2):142-149.
    [8] 王金南, 董战峰, 蒋洪强, 等.中国环境保护战略政策70年历史变迁与改革方向[J]. 环境科学研究,2019,32(10):1636-1644.

    WANG J N, DONG Z F, JIANG H Q, et al. Historical evolution and reform of China′s environmental strategy and policy during the past seventy years(1949-2019)[J]. Research of Environmental Sciences,2019,32(10):1636-1644.
    [9] SHRESTHA S, BHATTA B, SHRESTHA M, et al. Integrated assessment of the climate and landuse change impact on hydrology and water quality in the Songkhram River Basin, Thailand[J]. Science of the Total Environment,2018,643:1610-1622. doi: 10.1016/j.scitotenv.2018.06.306
    [10] 张彦, 邹磊, 梁志杰, 等. 暴雨前后河南北部河流水质分异特征及其污染源解析[J/OL]. 环境科学.[2022-01-22]. https://doi.org/10.13227/j.hjkx.202109010.
    [11] 李悦昭, 陈海洋, 孙文超.白洋淀流域氮、磷、COD负荷估算及来源解析[J]. 中国环境科学,2021,41(1):366-376. doi: 10.3969/j.issn.1000-6923.2021.01.042

    LI Y Z, CHEN H Y, SUN W C. Load estimation and source apportionment of nitrogen, phosphorus and COD in the basin of Lake Baiyang[J]. China Environmental Science,2021,41(1):366-376. doi: 10.3969/j.issn.1000-6923.2021.01.042
    [12] 马小雪, 龚畅, 郭加汛, 等.长江下游快速城市化地区水污染特征及源解析: 以秦淮河流域为例[J]. 环境科学,2021,42(7):3291-3303.

    MA X X, GONG C, GUO J X, et al. Water pollution characteristics and source apportionment in rapid urbanization region of the Lower Yangtze River: considering the Qinhuai River Catchment[J]. Environmental Science,2021,42(7):3291-3303.
    [13] 王慧勇, 遆超普, 王良杰等. 基于SWAT模型的典型农业小流域氮污染时空分布特征及关键源解析[J]. 湖泊科学, 2022, 34(2). doi: 10.18307/2022.0213.
    [14] 洪慧, 李娟, 汪洋, 等.基于统计学方法的地下水水质评价与成因分析: 以齐齐哈尔市为例[J]. 环境工程技术学报,2019,9(4):431-439. doi: 10.12153/j.issn.1674-991X.2019.04.160

    HONG H, LI J, WANG Y, et al. Groundwater quality evaluation and causes analysis based on statistical methods: taking Qiqihar City as an example[J]. Journal of Environmental Engineering Technology,2019,9(4):431-439. doi: 10.12153/j.issn.1674-991X.2019.04.160
    [15] 席浩郡, 刘贝贝, 黄雅娟, 等.北京市北沙河小流域非点源氮、磷负荷估算与源解析[J]. 环境工程技术学报,2021,11(2):258-266. doi: 10.12153/j.issn.1674-991X.20200076

    XI H J, LIU B B, HUANG Y J, et al. Estimation and sources apportionment of non-point source nitrogen and phosphorus loads in Beishahe sub-catchment of Beijing[J]. Journal of Environmental Engineering Technology,2021,11(2):258-266. doi: 10.12153/j.issn.1674-991X.20200076
    [16] 高伟, 程国微, 严长安, 等.1988—2018年滇池氮磷比的时空演变特征与原因解析[J]. 湖泊科学,2021,33(1):64-73. doi: 10.18307/2021.0105

    GAO W, CHENG G W, YAN C G, et al. Identifying spatiotemporal alteration of nitrogen to phosphorus ratio of Lake Dianchi and its driving forces during 1988-2018[J]. Journal of Lake Sciences,2021,33(1):64-73. doi: 10.18307/2021.0105
    [17] KNIGHT J. Anthropocene futures: people, resources and sustainability[J]. The Anthropocene Review,2015,2(2):152-158. doi: 10.1177/2053019615569318
    [18] VERNIER F, LECCIA-PHELPIN O, LESCOT J M, et al. Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France)[J]. Environmental Science and Pollution Research International,2017,24(8):6923-6950. doi: 10.1007/s11356-016-7657-2
    [19] KHAN H F, YANG Y C E, XIE H, et al. A coupled modeling framework for sustainable watershed management in transboundary river basins[J]. Hydrology and Earth System Sciences,2017,21(12):6275-6288. doi: 10.5194/hess-21-6275-2017
    [20] 张万顺, 张紫倩, 彭虹, 等. 粤港澳大湾区典型城市河湖水质变化规律研究: 以金山湖流域为例[J/OL]. 水资源保护. [2022-01-22]. http://kns.cnki.net/kcms/detail/32.1356.TV.20210316.1109.002.html.
    [21] 张万顺, 李琳, 彭虹, 等.面向水环境改善的城市河网动态水环境容量[J]. 水资源保护,2022,38(1):167-175.

    ZHANG W S, LI L, PENG H, et al. Dynamic water environment capacity of urban river network for water environment improvement[J]. Water Resources Protection,2022,38(1):167-175.
    [22] CHEN X M, XU G H, ZHANG W S, et al. Spatial variation pattern analysis of hydrologic processes and water quality in Three Gorges Reservoir area[J]. Water,2019,11(12):2608. doi: 10.3390/w11122608
    [23] 赵琰鑫, 张万顺, 汤怡, 等.湖泊-河网耦合水动力水质模型研究[J]. 中国水利水电科学研究院学报,2011,9(1):53-58. doi: 10.3969/j.issn.1672-3031.2011.01.008

    ZHAO Y X, ZHANG W S, TANG Y, et al. Numerical study of coupled one-dimensional and two-dimensional hydrodynamic and water quality model for complex lake and river networks regions[J]. Journal of China Institute of Water Resources and Hydropower Research,2011,9(1):53-58. doi: 10.3969/j.issn.1672-3031.2011.01.008
    [24] WANG Y G, ZHANG W S, ZHAO Y X, et al. Modelling water quality and quantity with the influence of inter-basin water diversion projects and cascade reservoirs in the Middle-lower Hanjiang River[J]. Journal of Hydrology,2016,541:1348-1362. doi: 10.1016/j.jhydrol.2016.08.039
    [25] 宋林旭, 刘德富, 肖尚斌, 等.基于SWAT模型的三峡库区香溪河非点源氮磷负荷模拟[J]. 环境科学学报,2013,33(1):267-275.

    SONG L X, LIU D F, XIAO S B, et al. Study on non-point nitrogen and phosphorus load from Xiangxi River in the Three Gorges Reservoir area based on SWAT[J]. Acta Scientiae Circumstantiae,2013,33(1):267-275.
    [26] JIANG L G, LIANG B, XUE Q, et al. Characterization of phosphorus leaching from phosphate waste rock in the Xiangxi River Watershed, Three Gorges Reservoir, China[J]. Chemosphere,2016,150:130-138. doi: 10.1016/j.chemosphere.2016.02.008
    [27] 夏函. 三峡库区流域国土空间格局演变及其水生态环境响应规律研究[D]. 武汉: 武汉大学, 2021.
    [28] 齐贞, 杜丽平, 刘晓冰, 等.SWAT模型中气象数据库和土壤数据库的构建方法[J]. 河南科学,2011,29(12):1458-1463. doi: 10.3969/j.issn.1004-3918.2011.12.019

    QI Z, DU L P, LIU X B, et al. Study on building methods for weather database and soil database of SWAT model[J]. Henan Science,2011,29(12):1458-1463. doi: 10.3969/j.issn.1004-3918.2011.12.019
    [29] 石荧原. 三峡区间流域非点源污染的精细化模拟研究[D]. 武汉: 武汉大学, 2017.
    [30] 涂华伟. 变化环境对香溪河流域水环境影响研究[D]. 武汉: 武汉大学, 2020.
    [31] 黄攀攀. 三峡区间流域典型功能区主体功能定位对非点源污染的影响研究[D]. 武汉: 武汉大学, 2019.
    [32] POSTEK P, LEŃ P, STRĘK Ż. The proposed indicator of fragmentation of agricultural land[J]. Ecological Indicators,2019,103:581-588. doi: 10.1016/j.ecolind.2019.04.023
    [33] LIANG X Y, LI Y B, SHAO J A, et al. Traditional agroecosystem transition in mountainous area of Three Gorges Reservoir Area[J]. Journal of Geographical Sciences,2020,30(2):281-296. doi: 10.1007/s11442-020-1728-5
    [34] SEEBER C, HARTMANN H, XIANG W, et al. Land use change and causes in the Xiangxi Catchment, Three Gorges Area derived from multispectral data[J]. Journal of Earth Science,2010,21(6):846-855. doi: 10.1007/s12583-010-0136-7
    [35] STREHMEL A, SCHMALZ B, FOHRER N. Evaluation of land use, land management and soil conservation strategies to reduce non-point source pollution loads in the Three Gorges region, China[J]. Environmental Management,2016,58(5):906-921. doi: 10.1007/s00267-016-0758-3
    [36] WU Y Y, XI X C, TANG X, et al. Policy distortions, farm size, and the overuse of agricultural chemicals in China[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(27):7010-7015. doi: 10.1073/pnas.1806645115
    [37] 崔超, 刘申, 翟丽梅, 等.兴山县香溪河流域农业源氮磷排放估算及时空特征分析[J]. 农业环境科学学报,2015,34(5):937-946. doi: 10.11654/jaes.2015.05.017

    CUI C, LIU S, ZHAI L M, et al. Estimates and spatio-temporal characteristics of nitrogen and phosphorus discharges from agricultural sources in Xiangxi River Basin, Xingshan County[J]. Journal of Agro-Environment Science,2015,34(5):937-946. doi: 10.11654/jaes.2015.05.017
    [38] 曹伟, 秦延文, 马迎群, 等.三峡库区重庆市内重点工业园区氮、磷排放特征[J]. 环境工程技术学报,2018,8(6):617-626. doi: 10.3969/j.issn.1674-991X.2018.06.082

    CAO W, QIN Y W, MA Y Q, et al. Characteristics of nitrogen and phosphorus discharge of main industrial parks in Chongqing in Three Gorges Reservoir Area[J]. Journal of Environmental Engineering Technology,2018,8(6):617-626. doi: 10.3969/j.issn.1674-991X.2018.06.082
    [39] MA X, LI Y, ZHANG M, et al. Assessment and analysis of non-point source nitrogen and phosphorus loads in the Three Gorges Reservoir Area of Hubei Province, China[J]. Science of the Total Environment,2011,412/413:154-161. doi: 10.1016/j.scitotenv.2011.09.034
    [40] ZHANG T, YANG Y H, NI J P, et al. Construction of an integrated technology system for control agricultural non-point source pollution in the Three Gorges Reservoir Areas[J]. Agriculture, Ecosystems & Environment,2020,295:106919. ⊗
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  296
  • HTML全文浏览量:  197
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-16
  • 网络出版日期:  2022-04-02

目录

    /

    返回文章
    返回