留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

嘉陵江鲁班水库氮磷时空分布特征及截留率

李青倩 杨鹊平 高红杰 李虹 李莹杰

李青倩,杨鹊平,高红杰,等.嘉陵江鲁班水库氮磷时空分布特征及截留率[J].环境工程技术学报,2022,12(2):567-572 doi: 10.12153/j.issn.1674-991X.20210673
引用本文: 李青倩,杨鹊平,高红杰,等.嘉陵江鲁班水库氮磷时空分布特征及截留率[J].环境工程技术学报,2022,12(2):567-572 doi: 10.12153/j.issn.1674-991X.20210673
LI Q Q,YANG Q P,GAO H J,et al.Spatial-temporal distribution characteristics and retention efficiencies of nitrogen and phosphorus in Luban Reservoir in Jialing River[J].Journal of Environmental Engineering Technology,2022,12(2):567-572 doi: 10.12153/j.issn.1674-991X.20210673
Citation: LI Q Q,YANG Q P,GAO H J,et al.Spatial-temporal distribution characteristics and retention efficiencies of nitrogen and phosphorus in Luban Reservoir in Jialing River[J].Journal of Environmental Engineering Technology,2022,12(2):567-572 doi: 10.12153/j.issn.1674-991X.20210673

嘉陵江鲁班水库氮磷时空分布特征及截留率

doi: 10.12153/j.issn.1674-991X.20210673
基金项目: 国家发展和改革委基础设施发展司委托课题
详细信息
    作者简介:

    李青倩(1992—),女,博士后,主要从事流域水环境模型研究,li.qingqian@craes.org.cn

    通讯作者:

    杨鹊平(1981—),女,工程师,主要从事水环境管理研究,yangqp@craes.org.cn

  • 中图分类号: X131

Spatial-temporal distribution characteristics and retention efficiencies of nitrogen and phosphorus in Luban Reservoir in Jialing River

  • 摘要: 鲁班水库是四川省第三大水库,具有灌溉、发电、防洪的功能。针对当前鲁班水库总氮(TN)、总磷(TP)浓度超标问题,阐明水库氮(N)、磷(P)时空分布特征,量化水库TN和TP的截留量及截留率,并识别影响水库水质的关键因素。结果表明:水库TN浓度年均值为(0.65±0.22)mg/L,TP浓度年均值为(0.05±0.03)mg/L。水库对TN和TP的截留率分别为55.38%和53.66%,其中,通过灌溉调水的途径去除的TN和TP分别占水库总截留量的38.11%和40.85%。除了外源N、P输入以外,水库中藻类的生长、死亡和分解过程影响水库N、P浓度,以及水库对N、P的截留率。可通过降低外源N、P输入,同时控制水库内部藻类的生长改善鲁班水库水质。

     

  • 图  1  鲁班水库水温、pH、透明度、DO、CODMn、COD和BOD5逐月变化特征

    Figure  1.  Monthly variations of water temperature, pH, transparency , DO, CODMn, COD and BOD5 in Luban Reservoir

    图  2  鲁班水库N、P和Chla浓度的逐月变化特征

    Figure  2.  Monthly variation characteristics of concentrations of N, P and Chla in Luban Reservoir

    表  1  营养状态分级表

    Table  1.   Trophic state grading list

    营养状态分级TLI(∑)定性评价
    贫营养 0~30
    中营养30~50良好
    轻度富营养50~60轻度污染
    中度富营养60~70中度污染
    重度富营养 70~100重度污染
    下载: 导出CSV

    表  2  2014—2019年鲁班水库各监测点位透明度、CODMn、TN浓度、TP浓度和N:P

    Table  2.   Transparency, CODMn, TN, TP contents and N:P of 4 sample sites in Luban Reservoir during the period from 2014 to 2019

    水化学指标进水口鲁班岛麻雀湾库尾
    透明度/m1.48±0.461.81±0.581.63±0.491.71±0.55
    CODMn/(mg/L)3.03±1.022.56±0.792.75±0.882.69±0.90
    TN浓度/(mg/L)0.72±0.240.59±0.190.68±0.230.61±0.21
    TP浓度/(mg/L)0.05±0.030.04±0.030.05±0.040.04±0.03
    N:P43±2751±4248±4348±39
    下载: 导出CSV

    表  3  相关理化参数的Pearson分析结果

    Table  3.   Pearson correlation coefficient for physiochemical characteristics

    项目水温pHDOCODMnBOD5NH4 +-NCODTNTPN:P透明度Chla
    水温1
    pH 0.468**1
    DO 0.561**1
    CODMn 0.211** 0.646** 0.576**1
    BOD5 0.592** 0.563** 0.795**1
    NH4 +-N−0.123*1
    COD 0.241** 0.486**0.406** 0.617** 0.469**1
    TN−0.310**−0.234** 0.120*1
    TP−0.503** 0.229** 0.295** 0.337**0.129* 0.178**0.190**1
    N:P 0.190**−0.223**−0.320**−0.351**−0.287**−0.296**0.295**−0.576**1
    透明度−0.316**−0.291**−0.155**−0.275**−0.189**−0.205**0.126*1
    Chla 0.376** 0.307** 0.482** 0.378** 0.393**−0.137*1
      注:**表示在0.01级别(双尾)相关性显著;*表示在0.05级别(双尾)相关性显著。
    下载: 导出CSV

    表  4  鲁班水库水质类别变化

    Table  4.   Variations of water quality of Luban Reservoir

    监测点位水质类别
    2014年2015年2016年2017年2018年2019年
    进水口
    鲁班岛
    麻雀湾
    库尾
    下载: 导出CSV

    表  5  2016—2019年鲁班岛监测点位水体营养状态

    Table  5.   Water trophic state of the Luban Island section during the period from 2016 to 2019

    年份综合营养状态指数营养状态分级
    201644.7中营养
    201741.5中营养
    201842.3中营养
    201942.3中营养
    下载: 导出CSV
  • [1] HAMPEL J J, MCCARTHY M J, GARDNER W S, et al. Nitrification and ammonium dynamics in Taihu Lake, China: seasonal competition for ammonium between nitrifiers and cyanobacteria[J]. Biogeosciences,2018,15(3):733-748. doi: 10.5194/bg-15-733-2018
    [2] CHEN X F, JIANG H Y, SUN X, et al. Nitrification and denitrification by algae-attached and free-living microorganisms during a cyanobacterial bloom in Lake Taihu, a shallow Eutrophic Lake in China[J]. Biogeochemistry,2016,131(1/2):135-146.
    [3] GUO J B, ZHANG C J, ZHENG G C, et al. The establishment of season-specific eutrophication assessment standards for a water-supply reservoir located in Northeast China based on chlorophyll-a levels[J]. Ecological Indicators,2018,85:11-20. doi: 10.1016/j.ecolind.2017.09.056
    [4] MCCARTHY M J, LAVRENTYEV P J, YANG L Y, et al. Nitrogen dynamics and microbial food web structure during a summer cyanobacterial bloom in a subtropical, shallow, well-mixed, eutrophic lake (Lake Taihu, China)[J]. Hydrobiologia,2007,581(1):195-207. doi: 10.1007/s10750-006-0496-2
    [5] YANG C T, NAN J, YU H Y, et al. Embedded reservoir and constructed wetland for drinking water source protection: effects on nutrient removal and phytoplankton succession[J]. Journal of Environmental Sciences,2020,87:260-271. doi: 10.1016/j.jes.2019.07.005
    [6] HUANG J C, ZHANG Y J, ARHONDITSIS G B, et al. The magnitude and drivers of harmful algal blooms in China's lakes and reservoirs: a national-scale characterization[J]. Water Research,2020,181:115902. doi: 10.1016/j.watres.2020.115902
    [7] van METER K J, CHOWDHURY S, BYRNES D K, et al. Biogeochemical asynchrony: ecosystem drivers of seasonal concentration regimes across the Great Lakes Basin[J]. Limnology and Oceanography,2020,65(4):848-862. doi: 10.1002/lno.11353
    [8] LI Q Q, YU Q B, WANG F, et al. Nitrogen removal in the Chaohu Lake, China: implication in estimating lake N uptake velocity and modelling N removal efficiency of large lakes and reservoirs in the Changjiang River network[J]. Ecological Indicators,2021,124:107353. doi: 10.1016/j.ecolind.2021.107353
    [9] KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology,2018,16(5):263-276. doi: 10.1038/nrmicro.2018.9
    [10] HUANG J C, ZHANG Y J, ARHONDITSIS G B, et al. How successful are the restoration efforts of China's lakes and reservoirs[J]. Environment International,2019,123:96-103. doi: 10.1016/j.envint.2018.11.048
    [11] LEACH T H, BEISNER B E, CAREY C C, et al. Patterns and drivers of deep chlorophyll maxima structure in 100 lakes: the relative importance of light and thermal stratification[J]. Limnology and Oceanography,2018,63(2):628-646. doi: 10.1002/lno.10656
    [12] 韩雪梅, 富国, 刘庆庆, 等.变权综合营养状态指数(TLICW)评价方法及其在三峡库区支流龙河的应用[J]. 环境工程技术学报,2018,8(6):627-634. doi: 10.3969/j.issn.1674-991X.2018.06.083

    HAN X M, FU G, LIU Q Q, et al. Changed weight trophic level index method and its application to Longhe tributary of the Three Gorges Reservoir area[J]. Journal of Environmental Engineering Technology,2018,8(6):627-634. doi: 10.3969/j.issn.1674-991X.2018.06.083
    [13] 米养民, 罗会刚.鲁班水库水体营养状态[J]. 四川环境,2012,31(4):90-93. doi: 10.3969/j.issn.1001-3644.2012.04.018
    [14] KWAK D H, JEON Y T, DUCK HUR Y. Phosphorus fractionation and release characteristics of sediment in the Saemangeum Reservoir for seasonal change[J]. International Journal of Sediment Research,2018,33(3):250-261. doi: 10.1016/j.ijsrc.2018.04.008
    [15] WU Z, LIU Y, LIANG Z Y, et al. Internal cycling, not external loading, decides the nutrient limitation in eutrophic lake: a dynamic model with temporal Bayesian hierarchical inference[J]. Water Research,2017,116:231-240. doi: 10.1016/j.watres.2017.03.039
    [16] 刘俊, 田学达, 王琳杰, 等.洞庭湖表层沉积物营养盐空间分布及来源解析[J]. 环境工程技术学报,2019,9(6):701-706. doi: 10.12153/j.issn.1674-991X.2019.05.180

    LIU J, TIAN X D, WANG L J, et al. Spatial distribution and source analysis of surface sediment nutrients in Lake Dongting[J]. Journal of Environmental Engineering Technology,2019,9(6):701-706. doi: 10.12153/j.issn.1674-991X.2019.05.180
    [17] MAAVARA T, AKBARZADEH Z, van CAPPELLEN P. Global dam-driven changes to riverine N:P:Si ratios delivered to the coastal ocean[J]. Geophysical Research Letters, 2020, 47(15):doi: 10.1029/2020gl088288.
    [18] MCCARTHY M J, GARDNER W S, LEHMANN M F, et al. Benthic nitrogen regeneration, fixation, and denitrification in a temperate, eutrophic lake: effects on the nitrogen budget and cyanobacteria blooms[J]. Limnology and Oceanography,2016,61(4):1406-1423. doi: 10.1002/lno.10306
    [19] ROLAND F A E, DARCHAMBEAU F, BORGES A V, et al. Denitrification, anaerobic ammonium oxidation, and dissimilatory nitrate reduction to ammonium in an East African Great Lake (Lake Kivu)[J]. Limnology and Oceanography,2018,63(2):687-701. doi: 10.1002/lno.10660
    [20] VAROL M. Spatio-temporal changes in surface water quality and sediment phosphorus content of a large reservoir in Turkey[J]. Environmental Pollution,2020,259:113860. doi: 10.1016/j.envpol.2019.113860
    [21] VILMIN L, MOGOLLÓN J M, BEUSEN A H W, et al. Forms and subannual variability of nitrogen and phosphorus loading to global river networks over the 20th century[J]. Global and Planetary Change,2018,163:67-85. doi: 10.1016/j.gloplacha.2018.02.007
    [22] AKBARZADEH Z, MAAVARA T, SLOWINSKI S, et al. Effects of damming on river nitrogen fluxes: a global analysis[J]. Global Biogeochemical Cycles,2019,33(11):1339-1357. doi: 10.1029/2019GB006222
    [23] ANDERSEN I M, WILLIAMSON T J, GONZÁLEZ M J, et al. Nitrate, ammonium, and phosphorus drive seasonal nutrient limitation of chlorophytes, cyanobacteria, and diatoms in a hyper-eutrophic reservoir[J]. Limnology and Oceanography,2020,65(5):962-978. doi: 10.1002/lno.11363
    [24] BOTREL M, BRISTOW L A, ALTABET M A, et al. Assimilation and nitrification in pelagic waters: insights using dual nitrate stable isotopes (δ15N, δ18O) in a shallow lake[J]. Biogeochemistry,2017,135(3):221-237. doi: 10.1007/s10533-017-0369-y
    [25] HOWARTH R W, BILLEN G, SWANEY D, et al. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human influences[J]. Biogeochemistry,1996,35(1):75-139. doi: 10.1007/BF02179825
    [26] HARRISON J A, MARANGER R J, ALEXANDER R B, et al. The regional and global significance of nitrogen removal in lakes and reservoirs[J]. Biogeochemistry,2009,93(1/2):143-157.
    [27] MARCÉ R, ARMENGOL J. Modeling nutrient in-stream processes at the watershed scale using Nutrient Spiralling metrics[J]. Hydrology and Earth System Sciences,2009,13(7):953-967. ⊗ doi: 10.5194/hess-13-953-2009
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  281
  • HTML全文浏览量:  174
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-14
  • 网络出版日期:  2022-04-02

目录

    /

    返回文章
    返回