留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京地区冬季重污染期间的雾层特征

田润泽 徐峻 张众志 唐枷榕 程苗苗

田润泽,徐峻,张众志,等.北京地区冬季重污染期间的雾层特征[J].环境工程技术学报,2022,12(4):975-984 doi: 10.12153/j.issn.1674-991X.20210670
引用本文: 田润泽,徐峻,张众志,等.北京地区冬季重污染期间的雾层特征[J].环境工程技术学报,2022,12(4):975-984 doi: 10.12153/j.issn.1674-991X.20210670
TIAN R Z,XU J,ZHANG Z Z,et al.Characteristics of fog layer during heavy pollution in winter in Beijing[J].Journal of Environmental Engineering Technology,2022,12(4):975-984 doi: 10.12153/j.issn.1674-991X.20210670
Citation: TIAN R Z,XU J,ZHANG Z Z,et al.Characteristics of fog layer during heavy pollution in winter in Beijing[J].Journal of Environmental Engineering Technology,2022,12(4):975-984 doi: 10.12153/j.issn.1674-991X.20210670

北京地区冬季重污染期间的雾层特征

doi: 10.12153/j.issn.1674-991X.20210670
基金项目: 国家自然科学基金项目(41575127);国家重点研发计划项目(2019YFC0214800)
详细信息
    作者简介:

    田润泽(1997—),男,硕士,主要从事区域空气污染研究,rztian0619@gmail.com

    通讯作者:

    徐峻(1969—),男,研究员,博士,主要从事区域空气污染研究,xujun@craes.org.cn

  • 中图分类号: X51

Characteristics of fog layer during heavy pollution in winter in Beijing

  • 摘要:

    大多数针对北京地区冬季重污染过程的研究侧重于气溶胶,关于该过程中雾的研究较少。利用北京南郊观象台L波段探空和地面气象观测资料,以及MODIS和VISSR卫星数据等,对2013年1月12—15日北京地区重污染期间的雾进行分析,发现4 d中共发生2次辐射雾和2次平流雾,每天的雾在类型、垂直分布、形成过程、层结等方面都完全不同:12日清晨为充分发展的辐射雾,辐射雾的生成和发展使近地层稳定层结转变为近中性;13日清晨为2层相连的高空平流雾,分别来自不同源地,平流雾的到来造成近地层雾的消散,也使低层大气扩散能力有所加强;14日清晨出现辐射雾,其发展仅限于初生阶段,生存时间仅约2 h,期间存在贴地逆温;15日清晨为加深的平流雾,较前1天夜间的平流雾,雾顶高度抬升约500 m。鉴于北京地区冬季重污染过程中,雾在形成过程、垂直结构和层结影响等方面呈现出的复杂和多变的状况,针对重污染期间雾层的研究,以及其在垂直扩散和辐射等方面的效应研究都有待加强。

     

  • 图  1  2013年1月12—15日地面气象要素与PM2.5浓度的日变化

    注:图中竖虚线为探空仪施放时间。彩色阴影为雾的过程:Ⅰ为12日清晨的辐射雾;Ⅱ为13日清晨的平流雾,其中,Ⅱa为12日夜间的辐射雾,Ⅱb为高空平流雾到达,地面雾加深,Ⅱc为平流雾持续,地面雾消散;Ⅲ为14日清晨的辐射雾;Ⅳ为15日持续发展的平流雾。

    Figure  1.  Diurnal variation of surface meteorological elements and PM2.5 concentrations in January 12-15, 2013

    图  2  2013年1月12日的探空和MODIS影像

    Figure  2.  Radiosonde and MODIS images on January 12, 2013

    图  3  2013年1月13日的探空和MODIS影像

    Figure  3.  Radiosonde and MODIS images on January 13, 2013

    图  4  2013年1月14日的探空和MODIS影像

    Figure  4.  Radiosonde and MODIS images on January 14, 2013

    图  5  2013年1月15日的探空和MODIS与VISSR影像

    Figure  5.  Radiosonde and MODIS images on January 15, 2013

  • [1] 王跃思, 姚利, 王莉莉, 等.2013年元月我国中东部地区强霾污染成因分析[J]. 中国科学:地球科学,2014,44(1):15-26.
    [2] TAO M H, CHEN L F, XIONG X Z, et al. Formation process of the widespread extreme haze pollution over northern China in January 2013: implications for regional air quality and climate[J]. Atmospheric Environment,2014,98:417-425. doi: 10.1016/j.atmosenv.2014.09.026
    [3] HAN F, XU J, HE Y J, et al. Vertical structure of foggy haze over the Beijing-Tianjin-Hebei area in January 2013[J]. Atmospheric Environment,2016,139:192-204. doi: 10.1016/j.atmosenv.2016.05.030
    [4] LI Z Q, ECK T, ZHANG Y, et al. Observations of residual submicron fine aerosol particles related to cloud and fog processing during a major pollution event in Beijing[J]. Atmospheric Environment,2014,86:187-192. doi: 10.1016/j.atmosenv.2013.12.044
    [5] WANG X F, CHEN J M, SUN J F, et al. Severe haze episodes and seriously polluted fog water in Ji'nan, China[J]. Science of the Total Environment,2014,493:133-137. doi: 10.1016/j.scitotenv.2014.05.135
    [6] CHE H, XIA X, ZHU J, et al. Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements[J]. Atmospheric Chemistry and Physics,2014,14(4):2125-2138. doi: 10.5194/acp-14-2125-2014
    [7] 邱昀, 安欣欣, 刘保献, 等.北京市气溶胶消光系数垂直特征及影响因子探讨[J]. 环境科学研究,2020,33(3):519-525.

    QIU Y, AN X X, LIU B X, et al. Vertical distribution of aerosol extinction coefficient and its influencing factor in Beijing[J]. Research of Environmental Sciences,2020,33(3):519-525.
    [8] BI J R, HUANG J P, HU Z Y, et al. Investigating the aerosol optical and radiative characteristics of heavy haze episodes in Beijing during January of 2013[J]. Journal of Geophysical Research:Atmospheres,2014,119(16):9884-9900. doi: 10.1002/2014JD021757
    [9] 刘锐泽, 方渊, 张韬, 等.青岛市夏季VOCs污染特征及来源解析[J]. 环境工程技术学报,2021,11(6):1041-1048. doi: 10.12153/j.issn.1674-991X.20210202

    LIU R Z, FANG Y, ZHANG T, et al. Characteristics and source analysis of VOCs pollution in summer in Qingdao[J]. Journal of Environmental Engineering Technology,2021,11(6):1041-1048. doi: 10.12153/j.issn.1674-991X.20210202
    [10] 赵丽多, 任丽红, 李军, 等.云南省芒市春季PM2.5水溶性离子特征及来源分析[J]. 环境工程技术学报,2021,11(6):1057-1064. doi: 10.12153/j.issn.1674-991X.20210073

    ZHAO L D, REN L H, LI J, et al. Characteristics and source analysis of water-soluble ions of PM2.5 during spring in Mang City, Yunnan Province[J]. Journal of Environmental Engineering Technology,2021,11(6):1057-1064. doi: 10.12153/j.issn.1674-991X.20210073
    [11] 徐双喜, 张众志, 杜晓惠, 等.京津冀及周边民用散煤燃烧控制对北京市PM2.5的影响[J]. 环境科学研究,2021,34(12):2876-2886.

    XU S X, ZHANG Z Z, DU X H, et al. Impact of residential coal combustion control in Beijing-Tianjin-Hebei and surrounding region on PM2.5 in Beijing[J]. Research of Environmental Sciences,2021,34(12):2876-2886.
    [12] 周斌斌, 徐家骝.雾对大气污染物迁移扩散的影响[J]. 环境科学,1993,14(1):87-89.

    ZHOU B B, XU J L. The effects of fogs on the transport and diffusion of air pollutants[J]. Environmental Science,1993,14(1):87-89.
    [13] 张光智, 卞林根, 王继志, 等.北京及周边地区雾形成的边界层特征[J]. 中国科学(D辑:地球科学),2005,35(增刊1):73-83.
    [14] 何晖, 郭学良, 刘建忠, 等.北京一次大雾天气边界层结构特征及生消机理观测与数值模拟研究[J]. 大气科学,2009,33(6):1174-1186. doi: 10.3878/j.issn.1006-9895.2009.06.05

    HE H, GUO X L, LIU J Z, et al. Observation and simulation study of the boundary layer structure and the formation, dispersal mechanism of a heavy fog event in Beijing area[J]. Chinese Journal of Atmospheric Sciences,2009,33(6):1174-1186. doi: 10.3878/j.issn.1006-9895.2009.06.05
    [15] 王继志, 徐祥德, 杨元琴. 北京城市能见度及雾特征分析[J]. 应用气象学报, 2002, 13(增刊1): 160-169.

    WANG J Z, XU X D, YANG Y Q. A study of characteristics of urban visibility and fog in Beijing and the surrounding area[J]. Quarterly Journal of Applied Meteorlolgy, 2002, 13(Suppl 1): 160-169.
    [16] DUYNKERKE P G. Radiation fog: a comparison of model simulation with detailed observations[J]. Monthly Weather Review,1991,119(2):324-341. doi: 10.1175/1520-0493(1991)119<0324:RFACOM>2.0.CO;2
    [17] DUYNKERKE P G. Observation of a quasi-periodic oscillation due to gravity waves in a shallow radiation fog[J]. Quarterly Journal of the Royal Meteorological Society,1991,117(502):1207-1224. doi: 10.1002/qj.49711750205
    [18] 高雅. 天津平流雾过程及其空中微物理特征研究[D]. 南京: 南京信息工程大学, 2019.
    [19] 吴彬贵, 张宏升, 汪靖, 等.一次持续性浓雾天气过程的水汽输送及逆温特征分析[J]. 高原气象,2009,28(2):258-267.

    WU B G, ZHANG H S, WANG J, et al. Characteristics of the inversion and the water vapor transport during a duration fog event[J]. Plateau Meteorology,2009,28(2):258-267.
    [20] 蔡子颖, 韩素芹, 吴彬贵, 等.天津一次雾过程的边界层特征研究[J]. 气象,2012,38(9):1103-1109.

    CAI Z Y, HAN S Q, WU B G, et al. Analysis on characteristics of atmospheric boundary layer during a fog process in Tianjin[J]. Meteorological Monthly,2012,38(9):1103-1109.
    [21] YE X X, WU B G, ZHANG H S. The turbulent structure and transport in fog layers observed over the Tianjin area[J]. Atmospheric Research,2015,153:217-234. doi: 10.1016/j.atmosres.2014.08.003
    [22] REN Y, ZHENG S W, WEI W, et al. Characteristics of turbulent transfer during episodes of heavy haze pollution in Beijing in winter 2016/17[J]. Journal of Meteorological Research,2018,32(1):69-80. doi: 10.1007/s13351-018-7072-3
    [23] JU T T, WU B G, ZHANG H S, et al. Characteristics of turbulence and dissipation mechanism in a polluted radiation–advection fog life cycle in Tianjin[J]. Meteorology and Atmospheric Physics,2021,133(3):515-531. doi: 10.1007/s00703-020-00764-z
    [24] 李子华, 黄建平, 孙博阳, 等.辐射雾发展的爆发性特征[J]. 大气科学,1999,23(5):623-631. doi: 10.3878/j.issn.1006-9895.1999.05.13

    LI Z H, HUANG J P, SUN B Y, et al. Burst characteristics during the development of radiation fog[J]. Scientia Atmospherica Sinica,1999,23(5):623-631. doi: 10.3878/j.issn.1006-9895.1999.05.13
    [25] 陆春松, 牛生杰, 杨军, 等.南京冬季平流雾的生消机制及边界层结构观测分析[J]. 南京气象学院学报,2008,31(4):520-529.

    LU C S, NIU S J, YANG J, et al. An observational study on physical mechanism and boundary layer structure of winter advection fog in Nanjing[J]. Journal of Nanjing Institute of Meteorology,2008,31(4):520-529.
    [26] 杨军, 王蕾, 刘端阳, 等.一次深厚浓雾过程的边界层特征和生消物理机制[J]. 气象学报,2010,68(6):998-1006. doi: 10.11676/qxxb2010.094

    YANG J, WANG L, LIU D Y, et al. The boundary layer structure and the evolution mechanisms of a deep dense fog event[J]. Acta Meteorologica Sinica,2010,68(6):998-1006. doi: 10.11676/qxxb2010.094
    [27] 赵玉广, 李江波, 李青春.华北平原3次持续性大雾过程的特征及成因分析[J]. 气象,2015,41(4):427-437. doi: 10.7519/j.issn.1000-0526.2015.04.005

    ZHAO Y G, LI J B, LI Q C. Characteristics of three sustained dense fog events across the North China Plain[J]. Meteorological Monthly,2015,41(4):427-437. doi: 10.7519/j.issn.1000-0526.2015.04.005
    [28] 郭丽君, 郭学良.北京2009—2013年期间持续性大雾的类型、垂直结构及物理成因[J]. 大气科学,2016,40(2):296-310.

    GUO L J, GUO X L. The type, vertical structure and physical formation mechanism of persistent heavy fog events during 2009-2013 in the Beijing region[J]. Chinese Journal of Atmospheric Sciences,2016,40(2):296-310.
    [29] AGUSTÍ-PANAREDA A, VASILJEVIC D, BELJAARS A, et al. Radiosonde humidity bias correction over the West African region for the special AMMA reanalysis at ECMWF[J]. Quarterly Journal of the Royal Meteorological Society,2009,135(640):595-617. doi: 10.1002/qj.396
    [30] CIESIELSKI P E, JOHNSON R H, WANG J H. Correction of humidity biases in vaisala RS80-H sondes during NAME[J]. Journal of Atmospheric and Oceanic Technology,2009,26(9):1763-1780. doi: 10.1175/2009JTECHA1222.1
    [31] BIAN J C, CHEN H B, VÖMEL H, et al. Intercomparison of humidity and temperature sensors: GTS1, Vaisala RS80, and CFH[J]. Advances in Atmospheric Sciences,2011,28(1):139-146. doi: 10.1007/s00376-010-9170-8
    [32] 郝民, 龚建东, 王瑞文, 等.中国L波段探空湿度观测资料的质量评估及偏差订正[J]. 气象学报,2015,73(1):187-199. doi: 10.11676/qxxb2015.002

    HAO M, GONG J D, WANG R W, et al. The quality assessment and correction of the radiosonde humidity data biases of L-band in China[J]. Acta Meteorologica Sinica,2015,73(1):187-199. doi: 10.11676/qxxb2015.002
    [33] 郝民, 龚建东, 田伟红, 等.L波段探空仪湿度资料偏差订正及同化试验[J]. 应用气象学报,2018,29(5):559-570. doi: 10.11898/1001-7313.20180505

    HAO M, GONG J D, TIAN W H, et al. Deviation correction and assimilation experiment on L-band radiosonde humidity data[J]. Journal of Applied Meteorological Science,2018,29(5):559-570. doi: 10.11898/1001-7313.20180505
    [34] TAYLOR G I. The formation of fog and mist[J]. Quarterly Journal of the Royal Meteorological Society,1917,43(183):241-268. doi: 10.1002/qj.4970431832
    [35] 关月, 何立富.2013年1月大气环流和天气分析[J]. 气象,2013,39(4):531-536. doi: 10.7519/j.issn.1000-0526.2013.04.017

    GUAN Y, HE L F. Analysis of the January 2013 atmosphere circulation and weather[J]. Meteorological Monthly,2013,39(4):531-536. doi: 10.7519/j.issn.1000-0526.2013.04.017
    [36] ROACH W T, BROWN R, CAUGHEY S J, et al. The physics of radiation fog: I. a field study[J]. Quarterly Journal of the Royal Meteorological Society,1976,102(432):313-333.
    [37] ROACH W T. Back to basics: fog: part 1. definitions and basic physics[J]. Weather,1994,49(12):411-415. doi: 10.1002/j.1477-8696.1994.tb05962.x
    [38] 余君. 自动气象站与人工站气温、相对湿度观测结果的差异及其原因的研究[D]. 北京: 中国气象科学研究院, 2007.
    [39] 苏腾, 王晓蕾, 叶松, 等.气象用湿敏电容传感器的稳定性测试与分析[J]. 中国测试,2014,40(3):85-88. doi: 10.11857/j.issn.1674-5124.2014.03.023

    SU T, WANG X L, YE S, et al. Stability test and analysis for capacitive humidity sensor in meteorologic domain[J]. China Measurement & Test,2014,40(3):85-88. doi: 10.11857/j.issn.1674-5124.2014.03.023
    [40] PRICE J, PORSON A, LOCK A. An observational case study of persistent fog and comparison with an ensemble forecast model[J]. Boundary-Layer Meteorology,2015,155(2):301-327. doi: 10.1007/s10546-014-9995-2
    [41] PRICE J. Radiation fog: part I. observations of stability and drop size distributions[J]. Boundary-Layer Meteorology,2011,139(2):167-191. doi: 10.1007/s10546-010-9580-2
    [42] GARRATT J R, BROST R A. Radiative cooling effects within and above the nocturnal boundary layer[J]. Journal of the Atmospheric Sciences,1981,38(12):2730-2746. doi: 10.1175/1520-0469(1981)038<2730:RCEWAA>2.0.CO;2
    [43] SAVIJÄRVI H. Radiative and turbulent heating rates in the clear-air boundary layer[J]. Quarterly Journal of the Royal Meteorological Society,2006,132(614):147-161. doi: 10.1256/qj.05.61
    [44] WÆRSTED E G, HAEFFELIN M, DUPONT J C, et al. Radiation in fog: quantification of the impact on fog liquid water based on ground-based remote sensing[J]. Atmospheric Chemistry and Physics,2017,17(17):10811-10835. doi: 10.5194/acp-17-10811-2017
    [45] DOU J J, MIAO S G. Impact of mass human migration during Chinese New Year on Beijing urban heat island[J]. International Journal of Climatology,2017,37(11):4199-4210. doi: 10.1002/joc.5061
    [46] 张景哲, 刘启明.北京城市气温与下垫面结构关系的时相变化[J]. 地理学报,1988,43(2):159-168. doi: 10.3321/j.issn:0375-5444.1988.02.008

    ZHANG J Z, LIU Q M. Temporal variations 1n the relationship between urban temperature and the structure of urban surface in Beijing[J]. Acta Geographica Sinica,1988,43(2):159-168. doi: 10.3321/j.issn:0375-5444.1988.02.008
    [47] 张佳华, 侯英雨, 李贵才, 等.北京城市及周边热岛日变化及季节特征的卫星遥感研究与影响因子分析[J]. 中国科学(D辑:地球科学),2005,35(增刊1):187-194.
    [48] GULTEPE I, TARDIF R, MICHAELIDES S C, et al. Fog research: a review of past achievements and future perspectives[J]. Pure and Applied Geophysics,2007,164(6/7):1121-1159.
    [49] ROACH W T. Back to basics: fog: part 2. the formation and dissipation of land fog[J]. Weather,1995,50(1):7-11. doi: 10.1002/j.1477-8696.1995.tb06053.x
    [50] 王自发, 李杰, 王哲, 等.2013年1月我国中东部强霾污染的数值模拟和防控对策[J]. 中国科学:地球科学,2014,44(1):3-14.
    [51] ZHU J, ZHU B, HUANG Y, et al. PM2.5 vertical variation during a fog episode in a rural area of the Yangtze River Delta, China[J]. Science of the Total Environment,2019,685:555-563. ⊕ doi: 10.1016/j.scitotenv.2019.05.319
  • 加载中
图(5)
计量
  • 文章访问数:  322
  • HTML全文浏览量:  190
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-12
  • 录用日期:  2022-04-02

目录

    /

    返回文章
    返回