留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于经验小波变换的鄱阳湖CODMn预测

陈伟 金柱成 俞真元 王晓丽 彭士涛 魏燕杰

陈伟,金柱成,俞真元,等.基于经验小波变换的鄱阳湖CODMn预测[J].环境工程技术学报,2023,13(1):180-187 doi: 10.12153/j.issn.1674-991X.20210592
引用本文: 陈伟,金柱成,俞真元,等.基于经验小波变换的鄱阳湖CODMn预测[J].环境工程技术学报,2023,13(1):180-187 doi: 10.12153/j.issn.1674-991X.20210592
CHEN W,KIM J S,YU J W,et al.Forecasting CODMn of Poyang Lake based on empirical wavelet transform[J].Journal of Environmental Engineering Technology,2023,13(1):180-187 doi: 10.12153/j.issn.1674-991X.20210592
Citation: CHEN W,KIM J S,YU J W,et al.Forecasting CODMn of Poyang Lake based on empirical wavelet transform[J].Journal of Environmental Engineering Technology,2023,13(1):180-187 doi: 10.12153/j.issn.1674-991X.20210592

基于经验小波变换的鄱阳湖CODMn预测

doi: 10.12153/j.issn.1674-991X.20210592
基金项目: 中央级公益性科研院所基本科研业务费专项(TKS190202,TKS20200405);天津市科技计划项目(20JCQNJC00100)
详细信息
    作者简介:

    陈伟(1997—),男,硕士研究生,主要研究方向为生态修复,tjutcw1997@163.com

    通讯作者:

    王晓丽(1972—),女,教授,主要研究方向为污染修复技术,tjutwxl@163.com

  • 中图分类号: X524

Forecasting CODMn of Poyang Lake based on empirical wavelet transform

  • 摘要:

    高锰酸盐指数(CODMn)是衡量水质状况的最重要参数之一,能反映水体受还原性物质污染的程度。结合经验小波变换(EWT)和双向长短期记忆(BLSTM)神经网络,提出了一种先利用EWT将原始的CODMn时间序列分解成若干成分,然后利用BLSTM神经网络对分解出来的每个成分进行预测,最后将所有成分的预测结果重建获得最终CODMn预测值的新的混合模型EWT-BLSTM;并以2017年8月—2020年4月鄱阳湖CODMn监测数据为研究对象,进行模型性能验证。结果表明:EWT-BLSTM模型具有良好的预测性能,预测未来1 d以后的CODMn时,EWT-BLSTM模型的平均绝对百分比误差为2.25%,与单一BLSTM神经网络模型相比降低了10.53%;预测未来7 d以后的CODMn时,EWT-BLSTM模型的平均绝对百分比误差为8.36%,与单一BLSTM神经网络模型相比降低了16.16%。在CODMn峰值处,该模型依然保持较高稳定的预测性能,说明在数据相对复杂、极端的情况下,该模型依然适用。

     

  • 图  1  2017年8月1日—2020年4月30日鄱阳湖CODMn数据分布

    Figure  1.  CODMn data distribution of Poyang Lake from August 1, 2017 to April 30, 2020

    图  2  LSTM神经网络和BLSTM神经网络的对比

    注:x(1),x (2),···,x(t)为数据输入;y(1),y (2),···,y (t)为数据输出。

    Figure  2.  Comparison between LSTM and BLSTM neural networks

    图  3  地表水体CODMn预测流程

    Figure  3.  Flow chart of CODMn prediction of surface water

    图  4  EWT对鄱阳湖CODMn时间序列的数据分解

    Figure  4.  Data decomposition of CODMn time series by EWT in Poyang Lake

    图  5  鄱阳湖测试阶段CODMn预测值和实测值之间的相关性 (P<0.01)

    Figure  5.  Correlation between predicted and measured CODMn values of Poyang Lake in test stage (P < 0.01)

    图  6  鄱阳湖测试阶段CODMn预测值和实测值对比

    Figure  6.  Comparision of predicted and measured CODMn values of Poyang Lake in test stage

    表  1  参与比较的模型的结构

    Table  1.   Structure of the competitor models

    模型数据分解算法神经网络算法
    BLSTM不使用BLSTM
    WD-BLSTMWDBLSTM
    EMD-BLSTMEMDBLSTM
    EWT-SVREWTSVR
    EWT-ELMEWTELM
    EWT-LSTMEWTLSTM
    下载: 导出CSV

    表  2  ICEEMDAN分解成分的样本熵

    Table  2.   Sample entropy calculation of ICEEMDAN modes

    成分类型样本熵
    原始数据0.85
    MODE10.81
    MODE20.72
    MODE30.57
    MODE40.45
    MODE50.19
    MODE60.09
    MODE70.04
    MODE80.00
    下载: 导出CSV

    表  3  CODMn时间序列以分解成分的预测模型的时间滞后值

    Table  3.   Time lags of the prediction model of the decomposition components of CODMn time series

    成分类型1 d以后预测7 d以后预测
    MODE14741
    MODE25246
    MODE34943
    MODE43630
    MODE55448
    MODE64135
    MODE75448
    MODE85650
    下载: 导出CSV

    表  4  BLSTM神经网络的超参数

    Table  4.   Hyperparameters of BLSTM neural network

    参数数值
    BLSTM层数2
    第一层的神经元数输入大小×2
    第二层的神经元数输入大小
    最小批量大小16
    学习率0.01
    最大迭代次数100
    下载: 导出CSV

    表  5  测试阶段EWT-BLSTM模型的预测性能

    Table  5.   Forecast performance of EWT-BLSTM model in the testing stage

    预测类型MAE/(mg/L)RMSE/(mg/L)MAPE/%
    1 d以后预测0.050.072.25
    7 d以后预测0.200.328.36
    下载: 导出CSV

    表  6  各模型的预测性能比较

    Table  6.   Comparison of the prediction performance of different models

    模型1 d以后预测7 d以后预测
    MAE
    /(mg/L)
    RMSE
    /(mg/L)
    MAPE
    /%
    MAE
    /(mg/L)
    RMSE
    /(mg/L)
    MAPE
    /%
    BLSTM0.320.6212.780.600.8724.52
    WD-BLSTM0.170.356.770.280.4611.72
    EMD-BLSTM0.190.239.330.340.5214.70
    EWT-SVR0.300.512.490.490.6723.75
    EWT-ELM0.230.369.790.290.4911.69
    EWT-LSTM0.050.082.340.250.3511.42
    EWT-BLSTM0.050.072.250.200.328.36
    下载: 导出CSV
  • [1] CARVALHO L, POIKANE S, LYCHE SOLHEIM A, et al. Strength and uncertainty of phytoplankton metrics for assessing eutrophication impacts in lakes[J]. Hydrobiologia,2013,704(1):127-140. doi: 10.1007/s10750-012-1344-1
    [2] WU Z S, ZHANG D W, CAI Y J, et al. Water quality assessment based on the water quality index method in Lake Poyang: the largest freshwater lake in China[J]. Scientific Reports,2017,7:17999. doi: 10.1038/s41598-017-18285-y
    [3] 王圣瑞, 舒俭民, 倪兆奎, 等.鄱阳湖水污染现状调查及防治对策[J]. 环境工程技术学报,2013,3(4):342-349. doi: 10.3969/j.issn.1674-991X.2013.04.054

    WANG S R, SHU J M, NI Z K, et al. Investigation on pollution situation and countermeasures in Poyang Lake[J]. Journal of Environmental Engineering Technology,2013,3(4):342-349. doi: 10.3969/j.issn.1674-991X.2013.04.054
    [4] ZHANG S S, WEI J, LI Y P, et al. The Influence of seasonal water level fluctuations on the soil nutrients in a typical wetland reserve in Poyang Lake, China[J]. Sustainability,2021,13(7):3846. doi: 10.3390/su13073846
    [5] PU J, WANG S R, NI Z K, et al. Implications of phosphorus partitioning at the suspended particle-water interface for lake eutrophication in China's largest freshwater lake, Poyang Lake[J]. Chemosphere,2021,263:128334. doi: 10.1016/j.chemosphere.2020.128334
    [6] 许加星, 徐力刚, 姜加虎, 等.鄱阳湖典型洲滩植物群落结构变化及其与土壤养分的关系[J]. 湿地科学,2013,11(2):186-191. doi: 10.3969/j.issn.1672-5948.2013.02.006

    XU J X, XU L G, JIANG J H, et al. Change of vegetation community structure and the relationship between it and soil nutrients in typical beaches in Poyang Lake area[J]. Wetland Science,2013,11(2):186-191. doi: 10.3969/j.issn.1672-5948.2013.02.006
    [7] 王子为, 林佳宁, 张远, 等.鄱阳湖入湖河流氮磷水质控制限值研究[J]. 环境科学研究,2020,33(5):1163-1169. doi: 10.13198/j.issn.1001-6929.2020.03.45

    WANG Z W, LIN J N, ZHANG Y, et al. Water quality limits of nitrogen and phosphorus in the inflow rivers of Poyang Lake[J]. Research of Environmental Sciences,2020,33(5):1163-1169. doi: 10.13198/j.issn.1001-6929.2020.03.45
    [8] 谢培, 高峰, 王书航, 等.入湖河流对千岛湖水质影响研究: 以CODMn为例[J]. 环境工程技术学报,2019,9(6):692-700. doi: 10.12153/j.issn.1674-991X.2019.04.300

    XIE P, GAO F, WANG S H, et al. Study on the influence of inflowing rivers on the water quality of Qiandao Lake: taking CODMn as an example[J]. Journal of Environmental Engineering Technology,2019,9(6):692-700. doi: 10.12153/j.issn.1674-991X.2019.04.300
    [9] 王业耀, 姜明岑, 李茜, 等.流域水质预警体系研究与应用进展[J]. 环境科学研究,2019,32(7):1126-1133. doi: 10.13198/j.issn.1001-6929.2019.05.01

    WANG Y Y, JIANG M C, LI Q, et al. Advances in watershed water quality early-warning system[J]. Research of Environmental Sciences,2019,32(7):1126-1133. doi: 10.13198/j.issn.1001-6929.2019.05.01
    [10] RUBEN G B, ZHANG K, BAO H J, et al. Application and sensitivity analysis of artificial neural network for prediction of chemical oxygen demand[J]. Water Resources Management,2018,32(1):273-283. doi: 10.1007/s11269-017-1809-0
    [11] MIAO S, ZHOU C L, ALQAHTANI S A, et al. Applying machine learning in intelligent sewage treatment: a case study of chemical plant in sustainable cities[J]. Sustainable Cities and Society,2021,72:103009. doi: 10.1016/j.scs.2021.103009
    [12] Khullar S, Singh N. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation[J/OL]. Environmental Science and Pollution Research International, 2021. DOI: 10.1007/s11356-021-13875-w.
    [13] EZE E, AJMAL T. Dissolved oxygen forecasting in aquaculture: a hybrid model approach[J]. Applied Sciences,2020,10(20):7079. doi: 10.3390/app10207079
    [14] ZOU Q H, XIONG Q Y, LI Q D, et al. A water quality prediction method based on the multi-time scale bidirectional long short-term memory network[J]. Environmental Science and Pollution Research International,2020,27(14):16853-16864. doi: 10.1007/s11356-020-08087-7
    [15] FIJANI E, BARZEGAR R, DEO R, et al. Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters[J]. Science of the Total Environment,2019,648:839-853. doi: 10.1016/j.scitotenv.2018.08.221
    [16] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences,1998,454(1971):903-995. doi: 10.1098/rspa.1998.0193
    [17] LIU S Y, XU L Q, LI D L. Multi-scale prediction of water temperature using empirical mode decomposition with back-propagation neural networks[J]. Computers & Electrical Engineering,2016,49:1-8.
    [18] LIANG N, ZOU Z H, WEI Y G. Regression models (SVR, EMD and FastICA) in forecasting water quality of the Haihe River of China[J]. Desalination and Water Treatment,2019,154:147-159. doi: 10.5004/dwt.2019.24034
    [19] WANG Y X, YUAN Y, PAN Y, et al. Modeling daily and monthly water quality indicators in a canal using a hybrid wavelet-based support vector regression structure[J]. Water,2020,12(5):1476. doi: 10.3390/w12051476
    [20] GILLES J. Empirical wavelet transform[J]. IEEE Transactions on Signal Processing,2013,61(16):3999-4010. doi: 10.1109/TSP.2013.2265222
    [21] LIU H, YANG R, DUAN Z, et al. A hybrid neural network model for marine dissolved oxygen concentrations time-series forecasting based on multi-factor analysis and a multi-model ensemble[J/OL]. Engineering, 2021. DOI: 10.1016/j.eng.2021.10.005.
    [22] NONG X Z, SHAO D G, SHANG Y M, et al. Analysis of spatio-temporal variation in phytoplankton and its relationship with water quality parameters in the South-to-North Water Diversion Project of China[J]. Environmental Monitoring and Assessment,2021,193(9):1-18.
    [23] SIT M, DEMIRAY B Z, XIANG Z, et al. A comprehensive review of deep learning applications in hydrology and water resources[J]. Water Science and Technology,2020,82(12):2635-2670. doi: 10.2166/wst.2020.369
    [24] CHEN Y Y, SONG L H, LIU Y Q, et al. A review of the artificial neural network models for water quality prediction[J]. Applied Sciences,2020,10(17):5776. doi: 10.3390/app10175776
    [25] YE Q Q, YANG X Q, CHEN C B, et al. River water quality parameters prediction method based on LSTM-RNN Model[J]. 2019 Chinese Control and Decision Conference (CCDC),2019:3024-3028.
    [26] LIU Y Q, ZHANG Q, SONG L H, et al. Attention-based recurrent neural networks for accurate short-term and long-term dissolved oxygen prediction[J]. Computers and Electronics in Agriculture,2019,165:104964. ◇ doi: 10.1016/j.compag.2019.104964
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  95
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-19

目录

    /

    返回文章
    返回