留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿法堆垛育菇废水物化-生化组合处理技术研究

吕杨 尚光兴 廖珣 李江 李彦澄

吕杨,尚光兴,廖珣,等.湿法堆垛育菇废水物化-生化组合处理技术研究[J].环境工程技术学报,2022,12(6):2075-2081 doi: 10.12153/j.issn.1674-991X.20210559
引用本文: 吕杨,尚光兴,廖珣,等.湿法堆垛育菇废水物化-生化组合处理技术研究[J].环境工程技术学报,2022,12(6):2075-2081 doi: 10.12153/j.issn.1674-991X.20210559
LÜ Y,SHANG G X,LIAO X,et al.Study on physicochemical-biochemical combined treatment technology of wet stacking wastewater from breeding mushroom[J].Journal of Environmental Engineering Technology,2022,12(6):2075-2081 doi: 10.12153/j.issn.1674-991X.20210559
Citation: LÜ Y,SHANG G X,LIAO X,et al.Study on physicochemical-biochemical combined treatment technology of wet stacking wastewater from breeding mushroom[J].Journal of Environmental Engineering Technology,2022,12(6):2075-2081 doi: 10.12153/j.issn.1674-991X.20210559

湿法堆垛育菇废水物化-生化组合处理技术研究

doi: 10.12153/j.issn.1674-991X.20210559
基金项目: 贵州省科技计划项目(黔科合支撑〔2021〕一般475);贵州省人才基地项目(RCJD2018-21)
详细信息
    作者简介:

    吕杨(1997—),男,硕士研究生,主要研究方向为污水生物处理技术,1092882423@qq.com

    通讯作者:

    李彦澄(1989—),男,副教授,主要从事水污染物控制与资源化研究,ycli3@gzu.edu.cn

  • 中图分类号: X703

Study on physicochemical-biochemical combined treatment technology of wet stacking wastewater from breeding mushroom

  • 摘要:

    食用菌湿法堆垛育菇废水作为一种高浓度有机废水,具有难降解、高COD和高氨氮的特点,利用常规处理工艺难以实现达标排放。采用气浮-折流A/O生物膜反应器(HAOBR)-O3/H2O2组合工艺,研究气浮-HAOBR对育菇废水中COD和氨氮的处理效果,探讨O3/H2O2催化氧化段在不同组合方式下的处理效果和最佳控制参数,并利用三维荧光光谱技术分析该组合工艺废水中溶解性有机物(DOM)的变化特性。结果表明:经气浮-HAOBR处理后,育菇废水中COD和氨氮浓度分别降至(485±25)和(1.32±0.11) mg/L;在O3和H2O2浓度分别为0.88和333 mg/L时,O3/H2O2单元对COD和氨氮的去除效果最佳;最终出水COD和氨氮浓度分别为(22.50±1.50)和(1.30±0.15) mg/L,平均去除率分别为99.40%和98.70%;育菇废水中DOM主要是类富里酸物质、溶解性微生物代谢产物和类腐殖酸物质,处理后DOM荧光强度大幅降低,但主要组分未发生改变。气浮-HAOBR-O3/H2O2组合工艺能有效去除育菇废水中COD、氨氮和DOM,出水满足GB 8978—1996《污水综合排放标准》一级标准,具有很好的应用前景。

     

  • 图  1  试验装置流程

    Figure  1.  Schematic diagram of experimental device

    图  2  气浮-HAOBR 各阶段的氨氮浓度与COD变化

    Figure  2.  Variations in ammonia nitrogen and COD in each stage of Air Flotation-HAOBR treatment

    图  3  O3曝气时间对COD去除效果的影响

    Figure  3.  Effect of different ozone aeration time on COD removal

    图  4  H2O2浓度和O3曝气时间对COD去除效果的影响

    Figure  4.  Effect of different H2O2 contents and ozone aeration time on COD removal

    图  5  原水及各阶段出水的三维荧光光谱

    Figure  5.  3D-EEMs of raw water and effluent at various stages

    图  6  原水及各阶段出水三维荧光光谱Pin分布

    Figure  6.  Pi,n proportion distribution in 3D-EEMs of raw water and effluent of each stage

    表  1  试验用原水水质

    Table  1.   Quality of raw water for test

    COD/(mg/L)BOD5/(mg/L)氨氮浓度/(mg/L)pH盐度/‰色度
    3 693.60±100.781 212.59±131.7099.83±2.757.90±0.310.72±0.023 661±118.48
    下载: 导出CSV

    表  2  气浮-HAOBR 各阶段的pH、 DO、ORP和EC变化

    Table  2.   Variation of pH , DO, ORP and EC in each stage of Air Flotation-HAOBR treatment

    处理阶段 pH DO浓度/(mg/L) ORP/mV EC/(μS/cm)
    原水 7.81 165.1 1 534
    气浮出水 8.63 4.95 151.5 2 108
    HAOBR-厌氧区 7.57 −163.3 2 290
    HAOBR-好氧区 9.03 7.41 88.6 2 083
      注:—表示数值未检出。
    下载: 导出CSV

    表  3  气浮-HAOBR-O3/H2O2工艺的主要运行费用

    Table  3.   Main operating costs of Air Flotation-HAOBR-O3/ H2O2 process

    项目数量单价费用/(元/m3)
    药品聚合氯化铝3 kg/m32.4元/kg7.20
    聚丙烯酰胺0.12 kg/m310元/kg1.20
    H2O20.24 kg/m31.5元/kg1.34
    电费8.94 kW·h/m30.58 元/(kW·h)5.19
    合计 14.93
      注:实际药剂价格以当时市场价格为准,实际电费以项目所在地电费为准。此费用不含人工工资、设备维修保养费及折旧费。
    下载: 导出CSV
  • [1] 樊慈.基于经济效益与生态效益的食用菌产业优化评价[J]. 中国食用菌,2020,39(2):108-110.

    FAN C. Optimization evaluation of edible fungi industry based on economic and ecological benefits[J]. Edible Fungi of China,2020,39(2):108-110.
    [2] 邰丽梅, 董娇, 张琳, 等.中国香菇产业与标准化发展现状分析[J]. 中国食用菌,2020,39(5):8-16.

    TAI L M, DONG J, ZHANG L, et al. Analysis on the development status of Lentinus edodes industry and standardization in China[J]. Edible Fungi of China,2020,39(5):8-16.
    [3] 白静, 王现丽, 李智, 等.好氧颗粒污泥处理高浓度有机废水的研究进展[J]. 中国给水排水,2020,36(8):38-43.

    BAI J, WANG X L, LI Z, et al. Research progress on aerobic granular sludge for treatment of high concentration organic wastewater[J]. China Water & Wastewater,2020,36(8):38-43.
    [4] KIEJZA D, KOTOWSKA U, POLIŃSKA W, et al. Peracids - new oxidants in advanced oxidation processes: the use of peracetic acid, peroxymonosulfate, and persulfate salts in the removal of organic micropollutants of emerging concern:a review[J]. Science of the Total Environment,2021,790:148195. doi: 10.1016/j.scitotenv.2021.148195
    [5] 许若梦, 吴桐, 锁瑞娟, 等.基于不同自由基的高级氧化技术对水中诺氟沙星的去除效果[J]. 环境工程技术学报,2020,10(3):433-439. doi: 10.12153/j.issn.1674-991X.20190177

    XU R M, WU T, SUO R J, et al. Removal performance of norfloxacin from waters by advanced oxidation processes based on different free radicals[J]. Journal of Environmental Engineering Technology,2020,10(3):433-439. doi: 10.12153/j.issn.1674-991X.20190177
    [6] NARAYANAM J M R, STEPHENSON C R J. Visible light photoredox catalysis: applications in organic synthesis[J]. Chemical Society Reviews,2011,40(1):102-113. doi: 10.1039/B913880N
    [7] 付丽亚, 吴昌永, 周鉴, 等.3种一体式臭氧-BAF工艺对石化废水生化出水有机物去除特性比较研究[J]. 环境工程技术学报,2021,11(1):135-143. doi: 10.12153/j.issn.1674-991X.20200061

    FU L Y, WU C Y, ZHOU J, et al. Comparison study of organics removal characteristics by three kinds of integrated ozone-BAF processes treating biochemical effluent of petrochemical wastewater[J]. Journal of Environmental Engineering Technology,2021,11(1):135-143. doi: 10.12153/j.issn.1674-991X.20200061
    [8] KIM J G, KIM H B, SHIN D H, et al. In-situ generation of reactive oxygen species using combination of electrochemical oxidation and metal sulfide[J]. Science of the Total Environment,2021,789:147961. doi: 10.1016/j.scitotenv.2021.147961
    [9] BU J R, ZHOU X K, LIU H, et al. Supercritical Fenton oxidation: new advanced oxidation technology[J]. Journal of Environmental Engineering,2020,146(4):04020019. doi: 10.1061/(ASCE)EE.1943-7870.0001660
    [10] 刘文琛, 周伟伟, 成小翔, 等.臭氧组合技术对给水处理低压膜污染控制研究进展[J]. 中国给水排水,2020,36(8):44-49.

    LIU W C, ZHOU W W, CHENG X X, et al. Research progress on fouling control of low-pressure membrane in drinking water treatment by ozonation combination technology[J]. China Water & Wastewater,2020,36(8):44-49.
    [11] 赵洪军, 张倩, 唐一, 等.ZnO-MgO/Al2O3吸附-臭氧催化氧化处理难降解有机废水[J]. 环境化学,2021,40(3):818-827. doi: 10.7524/j.issn.0254-6108.2019100908

    ZHAO H J, ZHANG Q, TANG Y, et al. ZnO-MgO/Al2O3 adsorption-ozone catalytic oxidation treatment of refractory organic wastewater[J]. Environmental Chemistry,2021,40(3):818-827. doi: 10.7524/j.issn.0254-6108.2019100908
    [12] 宋江燕, 李方鸿, 吴根义, 等.氯咪巴唑在臭氧降解过程中的影响因素及其降解产物[J]. 环境科学研究,2022,35(2):478-487.

    SONG J Y, LI F H, WU G Y, et al. Degradation of climbazole by ozonation: influencing factors and degradation products[J]. Research of Environmental Sciences,2022,35(2):478-487.
    [13] 李敏, 付丽亚, 谭煜, 等.Mn-Ce/γ-Al2O3催化臭氧氧化深度处理石化废水中试研究[J]. 环境科学研究,2021,34(10):2380-2388.

    LI M, FU L Y, TAN Y, et al. Pilot study of advanced treatment of petrochemical wastewater by Mn-Ce/γ-Al2O3 catalytic ozonation[J]. Research of Environmental Sciences,2021,34(10):2380-2388.
    [14] HAO Y Y, MA H R, WANG Q, et al. Refractory DOM in industrial wastewater: formation and selective oxidation of AOPs[J]. Chemical Engineering Journal,2021,406:126857. doi: 10.1016/j.cej.2020.126857
    [15] LUO Z F, WANG D H, ZENG W S, et al. Removal of refractory organics from piggery bio-treatment effluent by the catalytic ozonation process with piggery biogas residue biochar as the catalyst[J]. Science of the Total Environment,2020,734:139448. doi: 10.1016/j.scitotenv.2020.139448
    [16] BUROV V E, LI J Z, MENG J. Nitrogen removal from domestic wastewater in a novel hybrid anoxic-oxic biofilm reactor at different reflux ratios[J]. Water Environment Research:a Research Publication of the Water Environment Federation,2021,93(6):865-874. doi: 10.1002/wer.1477
    [17] HOU J, CHEN Z Y, GAO J, et al. Simultaneous removal of antibiotics and antibiotic resistance genes from pharmaceutical wastewater using the combinations of up-flow anaerobic sludge bed, anoxic-oxic tank, and advanced oxidation technologies[J]. Water Research,2019,159:511-520. doi: 10.1016/j.watres.2019.05.034
    [18] DENG K W, TANG L G, LI J L, et al. Practicing anammox in a novel hybrid anaerobic-aerobic baffled reactor for treating high-strength ammonium piggery wastewater with low COD/TN ratio[J]. Bioresource Technology,2019,294:122193. doi: 10.1016/j.biortech.2019.122193
    [19] SONG J, ZHANG Z H, TANG S Y, et al. Does pre-ozonation or in situ ozonation really mitigate the protein-based ceramic membrane fouling in the integrated process of ozonation coupled with ceramic membrane filtration[J]. Journal of Membrane Science,2018,548:254-262. doi: 10.1016/j.memsci.2017.11.031
    [20] 蒋柱武, 王晟, 魏忠庆, 等.中试规模动力波吹脱技术分离老龄化垃圾渗滤液中的高浓度氨氮[J]. 环境工程学报,2020,14(11):3042-3052. doi: 10.12030/j.cjee.201912103

    JIANG Z W, WANG S, WEI Z Q, et al. Separation of high concentration ammonia nitrogen from aged-landfill leachate by pilot-scale dynamic wave stripping[J]. Chinese Journal of Environmental Engineering,2020,14(11):3042-3052. doi: 10.12030/j.cjee.201912103
    [21] CHATURAPRUEK A, VISVANATHAN C, AHN K H. Ozonation of membrane bioreactor effluent for landfill leachate treatment[J]. Environmental Technology,2005,26(1):65-73. doi: 10.1080/09593332608618583
    [22] CORTEZ S, TEIXEIRA P, OLIVEIRA R, et al. Ozonation as polishing treatment of mature landfill leachate[J]. Journal of Hazardous Materials,2010,182(1/2/3):730-734.
    [23] TIZAOUI C, BOUSELMI L, MANSOURI L, et al. Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems[J]. Journal of Hazardous Materials,2007,140(1/2):316-324.
    [24] MURUGANANDHAM M, SURI R P S, JAFARI S, et al. Recent developments in homogeneous advanced oxidation processes for water and wastewater treatment[J]. International Journal of Photoenergy,2014,2014:821674.
    [25] MALVESTITI J A, FAGNANI E, SIMÃO D, et al. Optimization of UV/H2O2 and ozone wastewater treatment by the experimental design methodology[J]. Environmental Technology,2019,40(15):1910-1922. doi: 10.1080/09593330.2018.1432698
    [26] ZHANG X Z, AMENDOLA P, HEWSON J C, et al. Influence of growth phase on harvesting of Chlorella zofingiensis by dissolved air flotation[J]. Bioresource Technology,2012,116:477-484. doi: 10.1016/j.biortech.2012.04.002
    [27] 黄俊霖, 苏婧, 郑明霞, 等.河岸带地下水溶解性有机物输入对As迁移转化的影响[J]. 环境科学研究,2020,33(2):411-420.

    HUANG J L, SU J, ZHENG M X, et al. Researching effects of dissolved organic matter inputs on migration and transformation of arsenic in riparian groundwater[J]. Research of Environmental Sciences,2020,33(2):411-420. ◇
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  141
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-09
  • 网络出版日期:  2022-11-25

目录

    /

    返回文章
    返回