留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表征微滤膜过滤性能的膜堵塞模型演变及其新模型理念

王亚军 李金守 常莺娜

王亚军,李金守,常莺娜.表征微滤膜过滤性能的膜堵塞模型演变及其新模型理念[J].环境工程技术学报,2022,12(4):1203-1209 doi: 10.12153/j.issn.1674-991X.20210498
引用本文: 王亚军,李金守,常莺娜.表征微滤膜过滤性能的膜堵塞模型演变及其新模型理念[J].环境工程技术学报,2022,12(4):1203-1209 doi: 10.12153/j.issn.1674-991X.20210498
WANG Y J,LI J S,CHANG Y N.Evolution of the membrane clogging model to characterize the filtration performance of the microfiltration membrane and its new model concept[J].Journal of Environmental Engineering Technology,2022,12(4):1203-1209 doi: 10.12153/j.issn.1674-991X.20210498
Citation: WANG Y J,LI J S,CHANG Y N.Evolution of the membrane clogging model to characterize the filtration performance of the microfiltration membrane and its new model concept[J].Journal of Environmental Engineering Technology,2022,12(4):1203-1209 doi: 10.12153/j.issn.1674-991X.20210498

表征微滤膜过滤性能的膜堵塞模型演变及其新模型理念

doi: 10.12153/j.issn.1674-991X.20210498
基金项目: 国家自然科学基金项目(41967043);甘肃省自然科学基金项目(20JR10RA145,20JR5RA461);甘肃省高等学校产业支撑引导项目(2020C-40)
详细信息
    作者简介:

    王亚军(1979—),男,教授,博士,主要从事膜污染控制机理研究,wyj79626@163.com

  • 中图分类号: X703

Evolution of the membrane clogging model to characterize the filtration performance of the microfiltration membrane and its new model concept

  • 摘要:

    为探究膜过滤过程中污染物迁移/沉积规律,推出一组符合实际过滤过程的数学模型,通过整合已有数学模型并分析其各自和共同的局限性,结合各类已有研究方法建立思路提出“非稳态膜堵塞模型拟合试验方法”理念,旨在深入剖析膜过滤过程中不同时间污染物在膜组件内部不同空间的分布状态,实现膜过滤过程及膜堵塞机理的全过程连续性研究,从而更加有针对性地解决膜组件内部不同截留层上污染物沉积问题,与此同时,提出模型优化技术为模型建立及精细化提供理论依据。

     

  • [1] VROUWENVELDER J S, GRAF von der SCHULENBURG D A, KRUITHOF J C, et al. Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: a feed spacer problem[J]. Water Research,2009,43(3):583-594. doi: 10.1016/j.watres.2008.11.019
    [2] 刘凡奇, 付昆明, 仇付国.污水处理厂中碳酸钙结垢产生的机理探讨[J]. 水处理技术,2017,43(12):14-18.

    LIU F Q, FU K M, QIU F G. Discussion on the mechanism of calcium carbonate scaling in wastewater treatment plants[J]. Technology of Water Treatment,2017,43(12):14-18.
    [3] 王芮. 基于膜表面颗粒受力与沉降行为解析的膜污染机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
    [4] CHEN L, WANG Y C, CHEN Z Y, et al. The fouling layer development on MD membrane for water treatments: an especial focus on the biofouling progress[J]. Chemosphere,2021,264:128458. doi: 10.1016/j.chemosphere.2020.128458
    [5] 许航, 陈卫, 孙敏, 等.有机物极性对超滤膜过滤性能的影响[J]. 四川大学学报(工程科学版),2011,43(4):184-188.
    [6] 张海丰, 孙宝盛, 赵新华, 等.曝气强度对膜生物反应器污泥混合液可滤性的影响[J]. 环境科学,2008,29(10):2777-2782. doi: 10.3321/j.issn:0250-3301.2008.10.015

    ZHANG H F, SUN B S, ZHAO X H, et al. Effect of aeration intensity on the filterability of mixed liquor in membrane bioreactor[J]. Environmental Science,2008,29(10):2777-2782. doi: 10.3321/j.issn:0250-3301.2008.10.015
    [7] 夏杰. 投加PAC和钙离子延缓膜污染机理研究[D]. 大连: 大连理工大学, 2009.
    [8] AGI A, JUNIN R, YAHYA A, et al. Comparative study of continuous and intermittent ultrasonic ultrafiltration membrane for treatment of synthetic produced water containing emulsion[J]. Chemical Engineering and Processing - Process Intensification,2018,132:137-147. doi: 10.1016/j.cep.2018.08.016
    [9] GAO Y H, QIN J, WANG Z W, et al. Backpulsing technology applied in MF and UF processes for membrane fouling mitigation: a review[J]. Journal of Membrane Science,2019,587:117136. doi: 10.1016/j.memsci.2019.05.060
    [10] 王生旺. BAF-MBR处理城市污水高标准排放的中试研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
    [11] 王宇, 王士军, 谷艳昌.基于分形理论的多孔介质渗透破坏研究[J]. 中国农村水利水电,2016(3):80-83. doi: 10.3969/j.issn.1007-2284.2016.03.019
    [12] 崔海航, 刘珺芳.基于污染物临界粘附力的超滤动态过程的CFD模拟[J]. 环境科学学报,2016,36(10):3636-3642.

    CUI H H, LIU J F. CFD simulation of the dynamic ultrafiltration process based on the foulant critical adhesion force[J]. Acta Scientiae Circumstantiae,2016,36(10):3636-3642.
    [13] HERMANS P H, BREDÉE H L. Zur kenntnis der filtrationsgesetze[J]. Recueil Des Travaux Chimiques Des Pays-Bas,2010,54(9):680-700. doi: 10.1002/recl.19350540902
    [14] MAHNOT N K, KALITA D, MAHANTA C L, et al. Effect of additives on the quality of tender coconut water processed by nonthermal two stage microfiltration technique[J]. LWT - Food Science and Technology,2014,59(2):1191-1195. doi: 10.1016/j.lwt.2014.06.040
    [15] HERMIA J. Constant pressure blocking filtration laws-application to power-law non-newtonian fluids[J]. Chemical Engineering Research & Design,1982,60:183-187.
    [16] 陆薇儿, 修光利.钙离子存在下胞外聚合物及其模拟溶液在膜污染中的差异[J]. 环境工程学报,2020,14(4):1003-1012. doi: 10.12030/j.cjee.201906109

    LU W E, XIU G L. Differences of extracellular polymeric substances (EPS) and model solution with regard to membrane fouling in the presence of Ca2+[J]. Chinese Journal of Environmental Engineering,2020,14(4):1003-1012. doi: 10.12030/j.cjee.201906109
    [17] IRITANI E, MUKAI Y, TANAKA Y, et al. Flux decline behavior in dead-end microfiltration of protein solutions[J]. Journal of Membrane Science,1995,103(1/2):181-191.
    [18] TRACEY E M, DAVIS R H. Protein fouling of track-etched polycarbonate microfiltration membranes[J]. Journal of Colloid and Interface Science,1994,167(1):104-116. doi: 10.1006/jcis.1994.1338
    [19] WANG F L, TARABARA V V. Pore blocking mechanisms during early stages of membrane fouling by colloids[J]. Journal of Colloid and Interface Science,2008,328(2):464-469. doi: 10.1016/j.jcis.2008.09.028
    [20] TANSEL B, BAO W Y, TANSEL I N. Characterization of fouling kinetics in ultrafiltration systems by resistances in series model[J]. Desalination,2000,129(1):7-14. doi: 10.1016/S0011-9164(00)00046-1
    [21] SIMONIČ M, PINTARIČ Z N. Study of acid whey fouling after protein isolation using nanofiltration[J]. Membranes,2021,11(7):492. doi: 10.3390/membranes11070492
    [22] 王晓昌, 王锦.横向流超滤膜污染动力学模型[J]. 环境化学,2002,21(6):552-557. doi: 10.3321/j.issn:0254-6108.2002.06.006

    WANG X C, WANG J. Kinetic study of membrane fouling under cross-flow ultrafiltration operation[J]. Environmental Chemistry,2002,21(6):552-557. doi: 10.3321/j.issn:0254-6108.2002.06.006
    [23] HO C C, ZYDNEY A L. A combined pore blockage and cake filtration model for protein fouling during microfiltration[J]. Journal of Colloid and Interface Science,2000,232(2):389-399. doi: 10.1006/jcis.2000.7231
    [24] HLAVACEK M, BOUCHET F. Constant flowrate blocking laws and an example of their application to dead-end microfiltration of protein solutions[J]. Journal of Membrane Science,1993,82(3):285-295. doi: 10.1016/0376-7388(93)85193-Z
    [25] 金鼎五.动态膜滤技术的研究动向[J]. 化学工程,1992,20(2):37-41,11.
    [26] FADILI A, TARDY P M J, ANTHONY PEARSON J R. A 3D filtration law for power-law fluids in heterogeneous porous media[J]. Journal of Non-Newtonian Fluid Mechanics,2002,106(2/3):121-146.
    [27] 李鲜日, 许振良, 周颖, 等.非牛顿液体恒速微滤部分堵塞膜过滤机理的研究[J]. 膜科学与技术,2008,28(6):14-17. doi: 10.3969/j.issn.1007-8924.2008.06.003

    LI X R, XU Z L, ZHOU Y, et al. Study on the model of partial blocking filtration mechanism in constant-rate microfiltration process of non-Newtonian fluid[J]. Membrane Science and Technology,2008,28(6):14-17. doi: 10.3969/j.issn.1007-8924.2008.06.003
    [28] 武虹妤. 纳米纤维素晶体/聚醚砜复合超滤膜的抗污染性能及膜老化研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
    [29] 王湛, 周翀. 膜分离技术基础[M]. 北京: 化学工业出版社, 2006.
    [30] SONG L F. Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling[J]. Journal of Membrane Science,1998,139(2):183-200. doi: 10.1016/S0376-7388(97)00263-9
    [31] 宋航, 付超, 石炎福.微滤过程阻力分析及过滤速率[J]. 高校化学工程学报,1999,13(4):315-322.

    SONG H, FU C, SHI Y F. Analysis on fouling resistance and calculation of flux for microfiltration[J]. Journal of Chemical Engineering of Chinese Universities,1999,13(4):315-322.
    [32] 张新妙, 王湛, 刘美.死端微滤通量预测模型的研究进展[J]. 北京工业大学学报,2005,31(2):179-185.

    ZHANG X M, WANG Z, LIU M. Recent development on flux prediction model on dead-end microfiltration[J]. Journal of Beijing University of Technology,2005,31(2):179-185.
    [33] RAHIMI M, MADAENI S S, ABBASI K. CFD modeling of permeate flux in cross-flow microfiltration membrane[J]. Journal of Membrane Science,2005,255(1/2):23-31.
    [34] KARAM A M, LALEG-KIRATI T M. Membrane fouling modeling and detection in direct contact membrane distillation[J]. Journal of Process Control,2019,81:190-196. doi: 10.1016/j.jprocont.2019.05.013
    [35] 王双, 梁剑, 蔡相宇, 等.组件设计对卷式反渗透膜元件抗污染性及能耗影响[J]. 膜科学与技术,2012,32(4):87-91. doi: 10.3969/j.issn.1007-8924.2012.04.017

    WANG S, LIANG J, CAI X Y, et al. Impact of component design on the fouling-resistant capability of the spiral-wound reverse osmosis membrane and energy consumption[J]. Membrane Science and Technology,2012,32(4):87-91. doi: 10.3969/j.issn.1007-8924.2012.04.017
    [36] 李文苹.过滤分离技术在能源、水及环境领域的应用及发展[J]. 化工进展,2014,33(6):1365-1372.
    [37] SAEED A, VUTHALURU R, VUTHALURU H B. Investigations into the effects of mass transport and flow dynamics of spacer filled membrane modules using CFD[J]. Chemical Engineering Research and Design,2015,93:79-99. doi: 10.1016/j.cherd.2014.07.002
    [38] NIKKOLA J, LIU X, LI Y, et al. Surface modification of thin film composite RO membrane for enhanced anti-biofouling performance[J]. Journal of Membrane Science,2013,444:192-200. doi: 10.1016/j.memsci.2013.05.032
    [39] CAO Z, WILEY D E, FANE A G. CFD simulations of net-type turbulence promoters in a narrow channel[J]. Journal of Membrane Science,2001,185(2):157-176. doi: 10.1016/S0376-7388(00)00643-8
    [40] TUFENKJI N, ELIMELECH M. Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media[J]. Environmental Science & Technology,2004,38(2):529-536.
    [41] GOMES E R, SANTOS A, LIMA S A. Numerical modeling of straining: the role of particle and pore size distributions[J]. Transport in Porous Media,2017,120(3):535-551. doi: 10.1007/s11242-017-0939-4
    [42] BULEJKO P. An analysis on energy demands in airborne particulate matter filtration using hollow-fiber membranes[J]. Energy Reports,2021,7:2727-2736. doi: 10.1016/j.egyr.2021.05.005
    [43] 卢继霞, 郭瑞宇, 王成, 等.基于固体颗粒尺寸分布的微孔滤膜堵塞机理分析[J]. 机械工程学报,2018,54(20):145-151. doi: 10.3901/JME.2018.20.145

    LU J X, GUO R Y, WANG C, et al. Fouling mechanism analysis on micro-pore filter membrane based on the solid particle size distribution[J]. Journal of Mechanical Engineering,2018,54(20):145-151. doi: 10.3901/JME.2018.20.145
    [44] HALFI E, ARAD A, BRENNER A, et al. Development of an oscillation-based technology for the removal of colloidal particles from water: CFD modeling and experiments[J]. Engineering Applications of Computational Fluid Mechanics,2020,14(1):622-641. doi: 10.1080/19942060.2020.1748114
    [45] CHEW J W, KILDUFF J, BELFORT G. The behavior of suspensions and macromolecular solutions in crossflow microfiltration: an update[J]. Journal of Membrane Science,2020,601:117865. doi: 10.1016/j.memsci.2020.117865
    [46] YANG S X, VIOT P, van TASSEL P R. Generalized model of irreversible multilayer deposition[J]. Physical Review E,1998,58(3):3324. doi: 10.1103/PhysRevE.58.3324
    [47] PARK J, JEONG K, BAEK S, et al. Modeling of NF/RO membrane fouling and flux decline using real-time observations[J]. Journal of Membrane Science,2019,576:66-77. doi: 10.1016/j.memsci.2019.01.031
    [48] 江立文, 杨银, 童祯恭, 等.净水处理中膜技术限制性因素研究进展[J]. 应用化工,2019,48(2):418-423. doi: 10.3969/j.issn.1671-3206.2019.02.040

    JIANG L W, YANG Y, TONG Z G, et al. Research progress on limiting factors of membrane technology in water purification[J]. Applied Chemical Industry,2019,48(2):418-423. doi: 10.3969/j.issn.1671-3206.2019.02.040
    [49] 高晓琪, 俞开昌, 王小毛.疏松型纳滤膜对饮用水中无机阳离子的截留特性及分离选择性[J]. 环境科学学报,2020,40(8):2700-2707.

    GAO X Q,YU K C, WANG X M. Rejection behaviors and separation selectivity of loose nanofiltration membranes for mineral ions in drinking water[J]. Acta Scientiae Circumstantiae,2020,40(8):2700-2707.
    [50] 胡晓晶. 基于移动网络的超滤膜污染物截留过程动态数值模拟研究[D]. 西安: 西安建筑科技大学, 2015.
    [51] USTA M, ANQI A E, OZTEKIN A. Reverse osmosis desalination modules containing corrugated membranes: computational study[J]. Desalination,2017,416:129-139. doi: 10.1016/j.desal.2017.05.005
    [52] 王补宣, 盛文彦, 彭晓峰, 等.剪切力作用下颗粒的絮凝与破碎[J]. 热科学与技术,2007,6(3):189-192. doi: 10.3969/j.issn.1671-8097.2007.03.001
    [53] LEE Y K, WON Y J, YOO J H, et al. Flow analysis and fouling on the patterned membrane surface[J]. Journal of Membrane Science,2013,427:320-325. doi: 10.1016/j.memsci.2012.10.010
    [54] ALI S M, QAMAR A, KERDI S, et al. Energy efficient 3D printed column type feed spacer for membrane filtration[J]. Water Research,2019,164:114961. doi: 10.1016/j.watres.2019.114961
    [55] CHEN L L, ZHANG Y, LI R J, et al. Light sheet fluorescence microscopy applied for in situ membrane fouling characterization: the microscopic events of hydrophilic membrane in resisting DEX fouling[J]. Water Research,2020,185:116240. ⊗ doi: 10.1016/j.watres.2020.116240
  • 加载中
计量
  • 文章访问数:  346
  • HTML全文浏览量:  224
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-26

目录

    /

    返回文章
    返回