留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

污泥-稻壳协同焚烧对污泥磷资源回收效率的影响

熊巧 吕航 吕瑞斌 吴翔 吴旭

熊巧,吕航,吕瑞斌,等.污泥-稻壳协同焚烧对污泥磷资源回收效率的影响[J].环境工程技术学报,2022,12(5):1633-1639 doi: 10.12153/j.issn.1674-991X.20210484
引用本文: 熊巧,吕航,吕瑞斌,等.污泥-稻壳协同焚烧对污泥磷资源回收效率的影响[J].环境工程技术学报,2022,12(5):1633-1639 doi: 10.12153/j.issn.1674-991X.20210484
XIONG Q,LÜ H,LÜ R B,et al.Effect of sludge-rice husk co-incineration on the recovery efficiency of sludge phosphorus resources[J].Journal of Environmental Engineering Technology,2022,12(5):1633-1639 doi: 10.12153/j.issn.1674-991X.20210484
Citation: XIONG Q,LÜ H,LÜ R B,et al.Effect of sludge-rice husk co-incineration on the recovery efficiency of sludge phosphorus resources[J].Journal of Environmental Engineering Technology,2022,12(5):1633-1639 doi: 10.12153/j.issn.1674-991X.20210484

污泥-稻壳协同焚烧对污泥磷资源回收效率的影响

doi: 10.12153/j.issn.1674-991X.20210484
基金项目: 国家自然科学基金青年基金项目(51908233)
详细信息
    作者简介:

    熊巧(1988—),女,博士后,主要研究方向为固体废物资源化,xiongqiao@hust.edu.cn

    通讯作者:

    吴旭(1984—),男,教授,主要研究方向为环境电化学,profxuwu@hust.edu.cn

  • 中图分类号: X703

Effect of sludge-rice husk co-incineration on the recovery efficiency of sludge phosphorus resources

  • 摘要:

    污水处理厂污泥中含有丰富的营养元素磷,回收其中的磷在一定程度上能缓解磷资源的衰竭。利用焚烧法处理污泥,以稻壳作为添加物,采用Hedley逐级提取法和酸浸出法考察污泥-稻壳焚烧灰中磷的形态和浸出效果的变化,并探讨稻壳添加量对焚烧灰中磷形态的影响。结果表明:当稻壳添加量为总质量的50%时,磷的生物可利用性最高;响应曲面法优化结果表明,最佳试验条件是HCl浓度、浸出时间和液固比分别为0.33 mol/L,6.4 h和50 mL/g,该条件下,磷的浸出率达93%,与污泥焚烧灰相比提高了20%;比较污泥灰、稻壳灰及污泥-稻壳混烧灰的理化性质可知,污泥-稻壳协同焚烧并未改变污泥灰和稻壳灰的主要组分,但出现了新的物相,形貌也发生了一定变化。污泥-稻壳协同焚烧能提高焚烧灰中磷的浸出率,从而有利于从污泥中回收磷资源。

     

  • 图  1  污泥、稻壳以及不同焚烧灰中磷形态分布

    Figure  1.  Phosphorus fraction distribution of sludge, rice husk and different incineration ashes

    图  2  各因素交互影响二维平面图和三维响应曲面

    Figure  2.  Planar and 3D response surface plots of interaction of various factors

    图  3  污泥、稻壳以及不同焚烧灰的磷浸出率与浸出量

    Figure  3.  Phosphorus extraction efficiency and phosphorus extraction capacity of sludge, rice husk and different incineration ashes

    图  4  SA、RA以及55A的扫描电镜图

    Figure  4.  SEM images of SA, RA and 55A

    图  5  SA、RA及55A的XRD图谱

    1—石英;2—白云母;3—AlPO4;4—MgAL2(PO4)2(OH)8H2O;5—Na4SiO4;6—钙沸石

    Figure  5.  XRD patterns of SA, RA and 55A

    表  1  污泥与稻壳的基本性质

    Table  1.   Basic properties of sludge and rice husk

    样品 含水率/%pH
    污泥 56.68±0.50 6.84±0.05
    稻壳 8.25±0.407.45±0.03
    下载: 导出CSV

    表  2  污泥和稻壳的工业分析和元素分析

    Table  2.   Proximate analysis and elemental analysis of sludge and rice husk % 

    样品灰分挥发分固定碳CHNO
    污泥47.3540.2512.4028.414.624.7514.84
    稻壳11.2578.5610.1940.615.830.8041.57
    下载: 导出CSV

    表  3  污泥和稻壳的化学组成

    Table  3.   Chemical composition of sludge and rice husk % 

    样品SiO2MgOFe2O3Na2OCaOAl2O3K2OSO3P2O3LOI1)
    污泥17.00.943.793.792.438.591.150.345.3456.98
    稻壳8.400.110.080.030.162.320.600.220.2287.75
      1) LOI表示1 200 ℃时的质量损失率。
    下载: 导出CSV

    表  4  不同焚烧灰的产率和总磷浓度

    Table  4.   Yield and total phosphorus content of different incineration ashes

    试验组焚烧灰产率/%总磷浓度/(mg/g)
    SA48.4±1.0547.8±1.25
    91A44.7±0.7847.2±0.85
    73A37.2±0.5643.8±0.56
    55A29.7±0.4940.5±0.35
    RA11.2±0.257.85±0.78
    下载: 导出CSV

    表  5  BBD试验设计因素和水平

    Table  5.   Design factors and levels in BBD experiments

    因素编号水平范围
    −11
    HCl浓度/(mol/L)A0.10.4
    浸出时间/hB210
    液固比/(mL/g)C3070
    下载: 导出CSV

    表  6  BBD试验设计和磷去除效果

    Table  6.   BBD experimental design and phosphorus removal efficiency

    序号编号Pe/%
    ABC
    10.10105065.1
    20.1063055.8
    30.2565086.5
    40.2527060.4
    50.40105089.7
    60.2565087.1
    70.4025083.6
    80.4067090.2
    90.25107077.0
    100.2565086.4
    110.2565086.9
    120.2565087.2
    130.4063077.2
    140.2523064.1
    150.25103064.6
    160.1067060.5
    170.1025055.1
    下载: 导出CSV

    表  7  SA、RA、55A的化学组成

    Table  7.   Chemical composition of SA, RA and 55A % 

    样品SiO2MgOFe2O3Na2OCaOAl2O3K2OSO3P2O3
    SA42.51.897.985.254.1217.282.521.029.83
    RA82.50.950.850.280.955.684.950.851.85
    55A55.81.757.663.562.5914.93.610.927.65
    下载: 导出CSV
  • [1] STEEN I. Phosphorus availability in the 21st century: management of a non-renewable resource[J]. Phosphorus and Potassium,1998,217:25-31.
    [2] 魏金山, 刘雪瑜, 宋永会, 等.氧化镁与白云石石灰对不同来源废水中磷的回收效果[J]. 环境科学研究,2015,28(11):1734-1740. doi: 10.13198/j.issn.1001-6929.2015.11.11

    WEI J S, LIU X Y, SONG Y H, et al. Phosphorus recovery from wastewaters of different sources with magnesium and dolomite lime[J]. Research of Environmental Sciences,2015,28(11):1734-1740. doi: 10.13198/j.issn.1001-6929.2015.11.11
    [3] ZHU W, XU Z R, LI L, et al. The behavior of phosphorus in sub- and super-critical water gasification of sewage sludge[J]. Chemical Engineering Journal,2011,171(1):190-196. doi: 10.1016/j.cej.2011.03.090
    [4] SOMMERS L E. Chemical composition of sewage sludges and analysis of their potential use as fertilizers[J]. Journal of Environmental Quality,1977,6(2):225-232.
    [5] XU Y F, HU H, LIU J Y, et al. pH dependent phosphorus release from waste activated sludge: contributions of phosphorus speciation[J]. Chemical Engineering Journal,2015,267:260-265. doi: 10.1016/j.cej.2015.01.037
    [6] 冯春, 杨光, 杜俊, 等.污水污泥堆肥重金属总量及形态变化[J]. 环境科学研究,2008,21(1):97-102. doi: 10.13198/j.res.2008.01.103.fengch.022

    FENG C, YANG G, DU J, et al. Study on the changes of total contents and the status of heavy metals for sewage sludge composting[J]. Research of Environmental Sciences,2008,21(1):97-102. doi: 10.13198/j.res.2008.01.103.fengch.022
    [7] 刘敬勇, 孙水裕.城市污泥焚烧过程中重金属形态与分布的热力学平衡分析[J]. 中国有色金属学报,2010,20(8):1645-1655. doi: 10.19476/j.ysxb.1004.0609.2010.08.031

    LIU J Y, SUN S Y. Thermodynamic equilibrium analysis of heavy metals speciation transformation and distribution during sewage sludge incineration[J]. The Chinese Journal of Nonferrous Metals,2010,20(8):1645-1655. doi: 10.19476/j.ysxb.1004.0609.2010.08.031
    [8] WANG Q M, LI J S, TANG P, et al. Sustainable reclamation of phosphorus from incinerated sewage sludge ash as value-added struvite by chemical extraction, purification and crystallization[J]. Journal of Cleaner Production,2018,181:717-725. doi: 10.1016/j.jclepro.2018.01.254
    [9] 王腾. 污泥-稻壳混烧灰熔融特性及自固化机理研究[D]. 武汉: 武汉大学, 2017.
    [10] WZOREK Z, JODKO M, GORAZDA K, et al. Extraction of phosphorus compounds from ashes from thermal processing of sewage sludge[J]. Journal of Loss Prevention in the Process Industries,2006,19(1):39-50. doi: 10.1016/j.jlp.2005.05.014
    [11] HEDLEY M J, STEWART J W B, CHAUHAN B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal,1982,46(5):970-976. doi: 10.2136/sssaj1982.03615995004600050017x
    [12] TURNER B L, LEYTEM A B. Phosphorus compounds in sequential extracts of animal manures: chemical speciation and a novel fractionation procedure[J]. Environmental Science & Technology,2004,38(22):6101-6108.
    [13] SMITH A M, SINGH S, ROSS A B. Fate of inorganic material during hydrothermal carbonisation of biomass: influence of feedstock on combustion behaviour of hydrochar[J]. Fuel,2016,169:135-145. doi: 10.1016/j.fuel.2015.12.006
    [14] LI M, TANG Y Y, LU X Y, et al. Phosphorus speciation in sewage sludge and the sludge-derived biochar by a combination of experimental methods and theoretical simulation[J]. Water Research,2018,140:90-99. doi: 10.1016/j.watres.2018.04.039
    [15] HUANG R X, TANG Y Z. Evolution of phosphorus complexation and mineralogy during (hydro) thermal treatments of activated and anaerobically digested sludge: insights from sequential extraction and P K-edge XANES[J]. Water Research,2016,100:439-447. doi: 10.1016/j.watres.2016.05.029
    [16] FERREIRA S L C, BRUNS R E, FERREIRA H S, et al. Box-Behnken design: an alternative for the optimization of analytical methods[J]. Analytica Chimica Acta,2007,597(2):179-186. doi: 10.1016/j.aca.2007.07.011
    [17] XIONG Q, WU X, LV H, et al. Influence of rice husk addition on phosphorus fractions and heavy metals risk of biochar derived from sewage sludge[J]. Chemosphere,2021,280:130566. doi: 10.1016/j.chemosphere.2021.130566
    [18] 陈昊铭. 市政污泥焚烧过程磷形态转变及焚烧灰草酸浸出磷回收的研究[D]. 武汉: 华中科技大学, 2019.
    [19] LI L M, YU C J, BAI J S, et al. Heavy metal characterization of circulating fluidized bed derived biomass ash[J]. Journal of Hazardous Materials,2012,233/234:41-47. doi: 10.1016/j.jhazmat.2012.06.053
    [20] JIN J W, LI Y N, ZHANG J Y, et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge[J]. Journal of Hazardous Materials,2016,320:417-426. doi: 10.1016/j.jhazmat.2016.08.050
    [21] WANG T, XUE Y J, ZHOU M, et al. Effect of addition of rice husk on the fate and speciation of heavy metals in the bottom ash during dyeing sludge incineration[J]. Journal of Cleaner Production,2020,244:118851. ⊗ doi: 10.1016/j.jclepro.2019.118851
  • 加载中
图(5) / 表(7)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  109
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-06

目录

    /

    返回文章
    返回