留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

疏浚对练江峡山大溪流域沉积物营养盐的影响分析

罗千里 胡艳芳 马金玉 张盛锐 范中亚 裴金铃

罗千里,胡艳芳,马金玉,等.疏浚对练江峡山大溪流域沉积物营养盐的影响分析[J].环境工程技术学报,2022,12(6):1985-1994 doi: 10.12153/j.issn.1674-991X.20210477
引用本文: 罗千里,胡艳芳,马金玉,等.疏浚对练江峡山大溪流域沉积物营养盐的影响分析[J].环境工程技术学报,2022,12(6):1985-1994 doi: 10.12153/j.issn.1674-991X.20210477
LUO Q L,HU Y F,MA J Y,et al.Effects of dredging on nutrients in sediments in Xiashan Daxi Basin of Lianjiang River[J].Journal of Environmental Engineering Technology,2022,12(6):1985-1994 doi: 10.12153/j.issn.1674-991X.20210477
Citation: LUO Q L,HU Y F,MA J Y,et al.Effects of dredging on nutrients in sediments in Xiashan Daxi Basin of Lianjiang River[J].Journal of Environmental Engineering Technology,2022,12(6):1985-1994 doi: 10.12153/j.issn.1674-991X.20210477

疏浚对练江峡山大溪流域沉积物营养盐的影响分析

doi: 10.12153/j.issn.1674-991X.20210477
基金项目: 广东省重点领域研发计划项目(2019B110205003,2020B1111350001)
详细信息
    作者简介:

    罗千里 (1990—),男,助理研究员,研究方向为底泥处理处置技术及资源化利用、水环境治理研究与应用,1069482625@qq.com

    通讯作者:

    范中亚(1985—),男,高级工程师,博士,主要从事流域水环境治理研究,fanzhongya@scies.org

  • 中图分类号: X522

Effects of dredging on nutrients in sediments in Xiashan Daxi Basin of Lianjiang River

  • 摘要:

    以练江峡山大溪流域为研究对象,通过分析疏浚前后10个点位表层沉积物有机质(OM)、总氮(TN)和总磷(TP)浓度以及间隙水和上覆水中氨氮(NH4 +-N)、TN和TP浓度,以揭示疏浚对表层沉积物营养盐的时空分布及释放过程的影响,并对疏浚后表层沉积物污染状况进行评价。结果表明:疏浚后间隙水和上覆水中TP、TN、NH4 +-N浓度均显著下降,表层沉积物中OM和TN平均浓度较疏浚前分别下降53.3%、54.5%,有接近1/2点位的表层沉积物出现TP浓度高于疏浚前的现象,疏浚对表层沉积物中营养物移除能力为TN>OM>TP;疏浚后表层沉积物OM、TN和TP污染情况较疏浚前有所改观,但污染程度依然处于较高等级;疏浚后,沉积物中的氮表现为“源”,而磷经历了从“源”到“汇”的转换,表明本次疏浚对表层沉积物间隙水中氮的内源释放有促进作用,对磷的内源释放存在抑制作用,这与本次疏浚的深度、沉积物的理化性质及赋存环境的改变有关。

     

  • 图  1  峡山大溪流域采样点位分布

    Figure  1.  Distribution of sampling points in Xiashan Daxi Basin

    图  2  疏浚前后各采样点位沉积物粒径分布

    注:疏浚前HLG01点位数据缺失。

    Figure  2.  Distribution of particle size of sediments at various sampling points before and after dredging

    图  3  疏浚前后各采样点位上覆水中NH4 +-N、TN和TP浓度变化

    注:疏浚前DCG01和HDX01点位数据缺失。

    Figure  3.  Concentration of NH4 +-N, TN and TP in overlying water at various sampling points before and after dredging

    图  4  疏浚前后各采样点位沉积物间隙水中NH4 +-N、TN和TP浓度变化

    Figure  4.  Variation of concentrations of NH4 +-N, TN and TP in interstitial water at various points before and after dredging

    图  5  疏浚前后各采样点位沉积物中C/N变化

    Figure  5.  C/N variation of sediments at various sampling points before and after dredging

    图  6  疏浚前后各采样点位沉积物中OM、TN和TP浓度变化

    Figure  6.  Variation of OM, TN and TP concentrations of sediments at various sampling points before and after dredging

    表  1  沉积物OI评价标准[18]

    Table  1.   Assessment standards of sediment organic pollution index

    OI污染程度污染等级
    <0.05清洁
    0.05~0.2轻度污染
    0.2~0.5中度污染
    ≥0.5重度污染
    下载: 导出CSV

    表  2  沉积物FF分级标准

    Table  2.   Classification standards of comprehensive pollution of sediments

    FF污染程度污染等级
    <1.0清洁
    1.0~1.5轻度污染
    1.5~2.0中度污染
    ≥2.0重度污染
    下载: 导出CSV

    表  3  疏浚前后峡山大溪流域表层沉积物理化特性

    Table  3.   Physico-chemical characteristics of surface sediments in Xiashan Daxi Basin before and after dredging

    阶段浓度/(g/kg)含水率/%占比/%
    OMTNTP粉砂黏土
    疏浚前范围54.2~1852.64~9.280.19~0.60957.1~87.25.73~28.1850.57~69.3917.03~27.11
    均值135.55.830.37572.9515.0562.8122.14
    疏浚后范围20.2~1430.8~5.080.05~1.13747.9~80.25.21~35.6453.2~91.316.38~15.88
    均值63.232.650.38963.4120.5369.9110.80
    下载: 导出CSV

    表  4  疏浚前后各采样点位沉积物OI和FF污染程度分级

    Table  4.   Pollution levels classification of OI and FF indexes of sediments at various sampling points before and after dredging

    采样点位疏浚前OI疏浚后OI疏浚前FF疏浚后FF
    数值污染程度数值污染程度数值污染程度数值污染程度
    XSDX011.09重度污染0.64重度污染2.10重度污染2.13重度污染
    XSDX021.97重度污染0.38中度污染2.61重度污染3.32重度污染
    XG011.06重度污染0.49中度污染2.62重度污染1.66中度污染
    SMX017.67重度污染0.09轻度污染6.39重度污染0.78清洁
    NZG017.04重度污染0.40中度污染4.89重度污染1.06轻度污染
    DCG018.90重度污染2.18重度污染6.66重度污染2.36重度污染
    DSG018.44重度污染3.00重度污染5.31重度污染3.52重度污染
    HDX017.00重度污染0.55重度污染4.77重度污染2.55重度污染
    YN015.88重度污染0.96重度污染5.53重度污染1.74中度污染
    HLG010.79重度污染1.28重度污染1.96中度污染2.21重度污染
    下载: 导出CSV
  • [1] 姜霞, 王书航, 张晴波, 等.污染底泥环保疏浚工程的理念·应用条件·关键问题[J]. 环境科学研究,2017,30(10):1497-1504. doi: 10.13198/j.issn.1001-6929.2017.02.83

    JIANG X, WANG S H, ZHANG Q B, et al. Analysis of concepts, conditions and critical problems in environmental dredging[J]. Research of Environmental Sciences,2017,30(10):1497-1504. doi: 10.13198/j.issn.1001-6929.2017.02.83
    [2] JASKUŁA J, SOJKA M, FIEDLER M, et al. Analysis of spatial variability of river bottom sediment pollution with heavy metals and assessment of potential ecological hazard for the Warta River, Poland[J]. Minerals,2021,11(3):327. doi: 10.3390/min11030327
    [3] WEN S L, WANG H W, WU T, et al. Vertical profiles of phosphorus fractions in the sediment in a chain of reservoirs in North China: implications for pollution source, bioavailability, and eutrophication[J]. Science of the Total Environment,2020,704:135318. doi: 10.1016/j.scitotenv.2019.135318
    [4] TANG X Q, LI R, HAN D, et al. Impacts of electrokinetic isolation of phosphorus through pore water drainage on sediment phosphorus storage dynamics[J]. Environmental Pollution,2020,266:115210. doi: 10.1016/j.envpol.2020.115210
    [5] EVANS J L, MURDOCK J N, TAYLOR J M, et al. Sediment nutrient flux rates in a shallow, turbid lake are more dependent on water quality than lake depth[J]. Water,2021,13(10):1344. doi: 10.3390/w13101344
    [6] YANG Y, CHEN W, YI Z Y, et al. The integrative effect of periphyton biofilm and tape grass (Vallisneria natans) on internal loading of shallow eutrophic lakes[J]. Environmental Science and Pollution Research International,2018,25(2):1773-1783. doi: 10.1007/s11356-017-0623-9
    [7] TONG Y L, LIANG T, WANG L Q, et al. Simulation on phosphorus release characteristics of Poyang Lake sediments under variable water levels and velocities[J]. Journal of Geographical Sciences,2017,27(6):697-710. doi: 10.1007/s11442-017-1401-9
    [8] YENILMEZ F, AKSOY A. Comparison of phosphorus reduction alternatives in control of nutrient concentrations in Lake Uluabat (Bursa, Turkey): partial versus full sediment dredging[J]. Limnologica,2013,43(1):1-9. doi: 10.1016/j.limno.2012.05.003
    [9] CHEN M S, CUI J Z, LIN J, et al. Successful control of internal phosphorus loading after sediment dredging for 6 years: a field assessment using high-resolution sampling techniques[J]. Science of the Total Environment,2018,616/617:927-936. doi: 10.1016/j.scitotenv.2017.10.227
    [10] LI Y, WANG L G, YAN Z W, et al. Effectiveness of dredging on internal phosphorus loading in a typical aquacultural lake[J]. Science of the Total Environment,2020,744:140883. doi: 10.1016/j.scitotenv.2020.140883
    [11] 王英丽, 杨晶, 黄显东.练江流域(汕头)段底泥污染物分布特征及污染评价[J]. 广东水利水电,2020(7):6-10. doi: 10.11905/j.issn.1008-0112.2020.07.002

    WANG Y L, YANG J, HUANG X D. Distribution characteristics and pollution evaluation of sediment pollutants in Lianjiang River Basin (Shantou reaches)[J]. Guangdong Water Resources and Hydropower,2020(7):6-10. doi: 10.11905/j.issn.1008-0112.2020.07.002
    [12] 田秀芳, 胡兆华, 邱家诚, 等.凤眼莲对练江水体重金属的去除效果和富集能力研究[J]. 农业与技术,2021,41(3):96-101. doi: 10.19754/j.nyyjs.20210215030
    [13] 刘翔宇.河道清淤工程余方处置方案探讨: 以韩江-榕江-练江水系连通潮水溪疏浚工程为例[J]. 亚热带水土保持,2021,33(1):50-52. doi: 10.3969/j.issn.1002-2651.2021.01.012

    LIU X Y. Probe into the disposal plan of rest in the river desilting project[J]. Subtropical Soil and Water Conservation,2021,33(1):50-52. doi: 10.3969/j.issn.1002-2651.2021.01.012
    [14] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
    [15] 刘俊, 田学达, 王琳杰, 等.洞庭湖表层沉积物营养盐空间分布及来源解析[J]. 环境工程技术学报,2019,9(6):701-706. doi: 10.12153/j.issn.1674-991X.2019.05.180

    LIU J, TIAN X D, WANG L J, et al. Spatial distribution and source analysis of surface sediment nutrients in Lake Dongting[J]. Journal of Environmental Engineering Technology,2019,9(6):701-706. doi: 10.12153/j.issn.1674-991X.2019.05.180
    [16] 张紫霞, 刘鹏, 王妍, 等.普者黑岩溶湿地干湿季沉积物氮、磷、有机质分布及污染风险评价[J]. 环境科学学报,2019,39(12):4088-4095. doi: 10.13671/j.hjkxxb.2019.0311

    ZHANG Z X, LIU P, WANG Y, et al. Distribution of nitrogen, phosphorus and organic matter in sediments of Puzhehei Karst wetland in dry and wet season and pollution risk assessment[J]. Acta Scientiae Circumstantiae,2019,39(12):4088-4095. doi: 10.13671/j.hjkxxb.2019.0311
    [17] 李芬芳, 黄代中, 连花, 等.洞庭湖及其入湖口表层沉积物氮、磷、有机质的分布及污染评价[J]. 生态环境学报,2018,27(12):2307-2313. doi: 10.16258/j.cnki.1674-5906.2018.12.017

    LI F F, HUANG D Z, LIAN H, et al. Distribution characteristics and pollution assessment of nitrogen, phosphorus and organic matter in the surface sediments of Dongting Lake and its lake inlets[J]. Ecology and Environmental Sciences,2018,27(12):2307-2313. doi: 10.16258/j.cnki.1674-5906.2018.12.017
    [18] 孙顺才. 太湖[M]. 北京: 海洋出版社, 1993.
    [19] 尹宇莹, 彭高卓, 谢意南, 等.洞庭湖表层沉积物中营养元素、重金属的污染特征与评价分析[J]. 环境化学,2021,40(8):2399-2409. doi: 10.18307/2021.0511

    YIN Y Y, PENG G Z, XIE Y N, et al. Characteristics and risk assessment of nutrients and heavy metals pollution in sediments of Dongting Lake[J]. Environmental Chemistry,2021,40(8):2399-2409. doi: 10.18307/2021.0511
    [20] YU J H, DING S M, ZHONG J C, et al. Evaluation of simulated dredging to control internal phosphorus release from sediments: focused on phosphorus transfer and resupply across the sediment-water interface[J]. Science of the Total Environment,2017,592:662-673. doi: 10.1016/j.scitotenv.2017.02.219
    [21] LIU C, SHAO S G, SHEN Q S, et al. Use of multi-objective dredging for remediation of contaminated sediments: a case study of a typical heavily polluted confluence area in China[J]. Environmental Science and Pollution Research International,2015,22(22):17839-17849. doi: 10.1007/s11356-015-4978-5
    [22] 王宁, 张刚, 王瑗.湖泊内源污染的环保疏浚及其效果: 以长春南湖清淤工程为例[J]. 环境科学研究,2004,17(2):34-37. doi: 10.3321/j.issn:1001-6929.2004.02.009

    WANG N, ZHANG G, WANG Y. Environmental protection dredging and its effects for intrinsic pollution of lake: case study of Nanhu lake in Changchun[J]. Research of Environmental Sciences,2004,17(2):34-37. doi: 10.3321/j.issn:1001-6929.2004.02.009
    [23] ZHONG J C, YOU B S, FAN C X, et al. Influence of sediment dredging on chemical forms and release of phosphorus[J]. Pedosphere,2008,18(1):34-44. doi: 10.1016/S1002-0160(07)60100-3
    [24] JING L D, WU C X, LIU J T, et al. The effects of dredging on nitrogen balance in sediment-water microcosms and implications to dredging projects[J]. Ecological Engineering,2013,52:167-174. doi: 10.1016/j.ecoleng.2012.12.109
    [25] 钟继承, 刘国锋, 范成新, 等.湖泊底泥疏浚环境效应: Ⅱ. 内源氮释放控制作用[J]. 湖泊科学,2009,21(3):335-344. doi: 10.3321/j.issn:1003-5427.2009.03.004

    ZHONG J C, LIU G F, FAN C X, et al. Environmental effect of sediment dredging in lake: Ⅱ. the role of sediment dredging in reducing internal nitrogen release[J]. Journal of Lake Sciences,2009,21(3):335-344. doi: 10.3321/j.issn:1003-5427.2009.03.004
    [26] WU H P, HAO B B, ZHOU Q C, et al. Contribution of various categories of environmental factors to sediment nitrogen-removal in a low C/N ratio river[J]. Ecological Engineering,2021,159:106121. doi: 10.1016/j.ecoleng.2020.106121
    [27] TANG F, HUANG T, FAN R, et al. Temporal variation in sediment C, N, and P stoichiometry in a plateau lake during sediment burial[J]. Journal of Soils and Sediments,2020,20(3):1706-1718. doi: 10.1007/s11368-019-02501-5
    [28] MEYERS P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology,1994,114(3/4):289-302.
    [29] FAN C X, ZHANG L, WANG J J, et al. Processes and mechanism of effects of sludge dredging on internal source release in lakes[J]. Chinese Science Bulletin,2004,49(17):1853-1859. doi: 10.1007/BF03183413
    [30] LIU C, DU Y H, YIN H B, et al. Exchanges of nitrogen and phosphorus across the sediment-water interface influenced by the external suspended particulate matter and the residual matter after dredging[J]. Environmental Pollution,2019,246:207-216. doi: 10.1016/j.envpol.2018.11.092
    [31] LOUREY M J, ALONGI D M, RYAN D A J, et al. Variability of nutrient regeneration rates and nutrient concentrations in surface sediments of the northern Great Barrier Reef shelf[J]. Continental Shelf Research,2001,21(2):145-155. doi: 10.1016/S0278-4343(00)00084-4
    [32] 余居华, 钟继承, 张银龙, 等.湖泊底泥疏浚对沉积物再悬浮及营养盐负荷影响的模拟[J]. 湖泊科学,2012,24(1):34-42. doi: 10.3969/j.issn.1003-5427.2012.01.005

    YU J H, ZHONG J C, ZHANG Y L, et al. Simulation of influence of dredging on sediment resuspension and nutrient loading in lake[J]. Journal of Lake Sciences,2012,24(1):34-42. doi: 10.3969/j.issn.1003-5427.2012.01.005
    [33] BEUTEL M W. Inhibition of ammonia release from anoxic profundal sediments in lakes using hypolimnetic oxygenation[J]. Ecological Engineering,2006,28(3):271-279. doi: 10.1016/j.ecoleng.2006.05.009
    [34] 陈超, 钟继承, 范成新, 等.湖泊疏浚方式对内源释放影响的模拟研究[J]. 环境科学,2013,34(10):3872-3878. doi: 10.13227/j.hjkx.2013.10.031

    CHEN C, ZHONG J C, FAN C X, et al. Simulation research on the release of internal nutrients affected by different dredging methods in lake[J]. Environmental Science,2013,34(10):3872-3878. doi: 10.13227/j.hjkx.2013.10.031
    [35] 魏伟伟, 李春华, 叶春, 等.基于底泥重金属污染及生态风险评价的星云湖疏浚深度判定[J]. 环境工程技术学报,2020,10(3):385-391. doi: 10.18307/2020.0506

    WEI W W, LI C H, YE C, et al. Determination of dredging depth of Xingyun Lake based on heavy metal pollution and ecological risk assessment of sediment[J]. Journal of Environmental Engineering Technology,2020,10(3):385-391. doi: 10.18307/2020.0506
    [36] CAO X Y, SONG C L, LI Q M, et al. Dredging effects on P status and phytoplankton density and composition during winter and spring in Lake Taihu, China[J]. Hydrobiologia,2007,581(1):287-295. ◇ doi: 10.1007/s10750-006-0516-2
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  130
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-03
  • 网络出版日期:  2022-11-25

目录

    /

    返回文章
    返回