留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物法烟气脱硝工艺研究进展

徐梦蝶 王建芳 葛璟麟 薛瑢 陈佳琦

徐梦蝶,王建芳,葛璟麟,等.生物法烟气脱硝工艺研究进展[J].环境工程技术学报,2022,12(6):2049-2056 doi: 10.12153/j.issn.1674-991X.20210457
引用本文: 徐梦蝶,王建芳,葛璟麟,等.生物法烟气脱硝工艺研究进展[J].环境工程技术学报,2022,12(6):2049-2056 doi: 10.12153/j.issn.1674-991X.20210457
XU M D,WANG J F,GE J L,et al.Research advances of bioprocesses for NOx removal from flue gas: a critical review[J].Journal of Environmental Engineering Technology,2022,12(6):2049-2056 doi: 10.12153/j.issn.1674-991X.20210457
Citation: XU M D,WANG J F,GE J L,et al.Research advances of bioprocesses for NOx removal from flue gas: a critical review[J].Journal of Environmental Engineering Technology,2022,12(6):2049-2056 doi: 10.12153/j.issn.1674-991X.20210457

生物法烟气脱硝工艺研究进展

doi: 10.12153/j.issn.1674-991X.20210457
基金项目: 国家自然科学基金项目(51878430);江苏省高校优势学科建设工程项目
详细信息
    作者简介:

    徐梦蝶(1995—),女,硕士研究生,研究方向为环境污染控制理论与技术,xumengdie2021@163.com

    通讯作者:

    王建芳(1973—),女,教授,博士,研究方向为环境污染控制理论与技术,wjf302@163.com

  • 中图分类号: X703

Research advances of bioprocesses for NOx removal from flue gas: a critical review

  • 摘要:

    氮氧化物(NOx)作为PM2.5和O3的前驱物,是重要的大气污染控制指标。选择性催化还原(SCR)、选择性非催化还原(SNCR)等是目前燃煤工业锅炉烟气脱硝的主流技术,但存在投资成本高、运行条件苛刻等问题,在中小型烟气脱硝工程应用中受到限制。生物法烟气脱硝技术因其高效、低耗、可持续特征在中小规模烟气脱硝中得到青睐,近年来许多学者对其开展了较广泛的研究。综述了生物法烟气脱硝技术的研究进展,概述相关工艺的脱硝原理及技术特征。论述了化学吸收-生物降解法(BioDeNOx)的最新研究方向,重点阐述了络合吸收-生物还原(CABR)反应器的运行原理、还原机制、反应器开发、运行参数和影响因素等,讨论了CABR体系存在的问题及解决措施,并对生物法烟气脱硝技术今后的研究方向进行了展望。

     

  • 图  1  CABR 法原理[29]

    Figure  1.  Principle of complexation absorption-biological reduction method

    图  2  微生物电化学还原过程[48]

    Figure  2.  Electrochemical reduction process of microorganisms

    表  1  不同脱硝技术优缺点及适用性对比

    Table  1.   Comparison of advantages, disadvantages and applicability of different denitrification technologies

    工艺类别优点缺点适用性
    硝化不受氧气干扰NO气液传质效率低,无法彻底脱氮适用于后续有废水
    反硝化的体系中
    反硝化清洁环保,NO去除率较高易受氧气干扰,受NO气液传质效率低的问题制约适用于含氧量较
    低的烟气脱硝
    厌氧氨
    氧化
    同步脱硝和废水资源化对厌氧环境要求严苛,易受氧气干扰适用于含氨氮废水
    和烟气脱硝需要同步处理的场景
    微藻代谢有经济效益,绿色环保NO去除率较低,工艺应用有待优化适用于较高浓度NO,可用作微藻生长氮源
    下载: 导出CSV

    表  2  不同生物脱硝工艺运行参数和性能

    Table  2.   Operational parameters and performance of different biological denitrification processes

    BioDeNOx工艺反应器Fe(Ⅱ)EDTA
    浓度/
    (mmol/L)
    NO浓度/10−6NO去
    除率/%
    CABR[25]GL-RDB1054495
    AnammoxDeNOx[26]SBR0.5282.2643.64
    Fungi-based BioDeNOx[27]530080~85
    下载: 导出CSV

    表  3  基于CABR工艺的不同生物反应器的运行参数与脱硝性能对比

    Table  3.   Comparison of operation parameters and denitrification performance of different bioreactor based on CABR process

    反应器NO浓度/10−6O2浓度/10−6NO去除率/%
    BTF-ABR[41]3803.5~790
    喷射环式生物反应器
    (JLBR)[42]
    500~3 00081~94
    生物转鼓滤池[43]370061.1
    生物膜填料塔[24]100~5001~5>90
    下载: 导出CSV
  • [1] YANG X, TENG F. The air quality co-benefit of coal control strategy in China[J]. Resources, Conservation and Recycling,2018,129:373-382. doi: 10.1016/j.resconrec.2016.08.011
    [2] 王凡, 田刚, 王红梅, 等.我国工业烟气SCR/SNCR脱硝技术与还原剂用量平衡[J]. 环境工程技术学报,2015,5(3):191-195. doi: 10.3969/j.issn.1674-991X.2015.03.029

    WANG F, TIAN G, WANG H M, et al. Analysis of industrial waste gas SCR/SNCR technology and balancing of reducing agent consumption[J]. Journal of Environmental Engineering Technology,2015,5(3):191-195. doi: 10.3969/j.issn.1674-991X.2015.03.029
    [3] 束韫, 龙红艳, 张凡, 等.生物质基活性炭负载金属催化还原NOx[J]. 环境科学研究,2018,31(9):1588-1596.

    SHU Y, LONG H Y, ZHANG F, et al. Catalytic reduction of NOx by biomass-derived activated carbon supported metals[J]. Research of Environmental Sciences,2018,31(9):1588-1596.
    [4] SHARIF H M A, MAHMOOD N, WANG S Y, et al. Recent advances in hybrid wet scrubbing techniques for NOx and SO2 removal: state of the art and future research[J]. Chemosphere,2021,273:129695. doi: 10.1016/j.chemosphere.2021.129695
    [5] RAMONA Z, VIOLETA N, MARIUS M, et al. Waste gas biotreatment[J]. Journal of Biotechnology,2017,256:S62.
    [6] KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology,2018,16(5):263-276. doi: 10.1038/nrmicro.2018.9
    [7] DAVIDOVA Y B, SCHROEDER E D, CHANG D P Y U. Biofiltration of nitric oxide[R].Pittsburgh:Air and Waste Management Association, 1997.
    [8] CHOU M S, LIN J H. Biotrickling filtration of nitric oxide[J]. Journal of the Air & Waste Management Association,2000,50(4):502-508.
    [9] CHEN J M, WU C Q, WANG J D, et al. Performance evaluation of biofilters packed with carbon foam and lava for nitric oxide removal[J]. Journal of Hazardous Materials,2006,137(1):172-177. doi: 10.1016/j.jhazmat.2006.01.049
    [10] 陈建孟, HERSHMAN L, 陈浚, 等.自养型生物过滤器硝化氧化一氧化氮[J]. 环境科学,2003,24(2):1-6. doi: 10.3321/j.issn:0250-3301.2003.02.001

    CHEN J M, HERSHMAN L, CHEN J, et al. Autotrophic biofilters for oxidation of nitric oxide[J]. Chinese Journal of Environmental Science,2003,24(2):1-6. doi: 10.3321/j.issn:0250-3301.2003.02.001
    [11] WEI Z S, WANG J B, HUANG Z S, et al. Removal of nitric oxide from biomass combustion by thermophilic nitrification-aerobic denitrification combined with catalysis in membrane biofilm reactor[J]. Biomass and Bioenergy,2019,126:34-40. doi: 10.1016/j.biombioe.2019.05.004
    [12] SCHMIDT I, HERMELINK C, van de PAS-SCHOONEN K, et al. Anaerobic ammonia oxidation in the presence of nitrogen oxides (NOx) by two different lithotrophs[J]. Applied and Environmental Microbiology,2002,68(11):5351-5357. doi: 10.1128/AEM.68.11.5351-5357.2002
    [13] 彭锦玉. 厌氧氨氧化塔式生物滤池脱除NO研究[D]. 大连: 大连理工大学, 2015.
    [14] 丁爽.厌氧氨氧化烟气脱硝工艺的探讨[J]. 化工进展,2017,36(11):4250-4256. doi: 10.16085/j.issn.1000-6613.2017-0543

    DING S. Discussions on biological flue gas denitrification using anaerobic ammonia oxidation (Anammox) process[J]. Chemical Industry and Engineering Progress,2017,36(11):4250-4256. doi: 10.16085/j.issn.1000-6613.2017-0543
    [15] YEN H W, HO S H, CHEN C Y, et al. CO2, NOx and SOx removal from flue gas via microalgae cultivation: a critical review[J]. Biotechnology Journal,2015,10(6):829-839. doi: 10.1002/biot.201400707
    [16] QIE F X, ZHU J Y, RONG J F, et al. Biological removal of nitrogen oxides by microalgae, a promising strategy from nitrogen oxides to protein production[J]. Bioresource Technology,2019,292:122037. doi: 10.1016/j.biortech.2019.122037
    [17] YOSHIHARA K I, NAGASE H, EGUCHI K, et al. Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor[J]. Journal of Fermentation and Bioengineering,1996,82(4):351-354. doi: 10.1016/0922-338X(96)89149-5
    [18] NASAGE H, YOSHIHARA K, EGUCHI K, et al. Characteristics of biological NOx removal from flue gas in a Dunaliella tertiolecta culture system[J]. Journal of Fermentation and Bioengineering,1997,83(5):461-465. doi: 10.1016/S0922-338X(97)83001-2
    [19] 夏奡, 叶文帆, 富经纬, 等.燃煤烟气微藻固碳减排技术现状与展望[J]. 煤炭科学技术,2020,48(1):108-119. doi: 10.13199/j.cnki.cst.2020.01.014

    XIA A, YE W F, FU J W, et al. Current status and prospect of carbon fixation and emission reduction technology for coal-fired flue gas by microalgae[J]. Coal Science and Technology,2020,48(1):108-119. doi: 10.13199/j.cnki.cst.2020.01.014
    [20] van der MAAS P, MANCONI I, KLAPWIJK B, et al. Nitric oxide reduction in BioDeNOx reactors: kinetics and mechanism[J]. Biotechnology and Bioengineering,2008,100(6):1099-1107. doi: 10.1002/bit.21841
    [21] YANG J R, WANG Y, CHEN H, et al. A new approach for the effective removal of NOx from flue gas by using an integrated system of oxidation-absorption-biological reduction[J]. Journal of Hazardous Materials,2021,404:124109. doi: 10.1016/j.jhazmat.2020.124109
    [22] SCHNEPPENSIEPER T, WANAT A, STOCHEL G, et al. Ligand effects on the kinetics of the reversible binding of NO to selected aminocarboxylato complexes of iron(Ⅱ) in aqueous solution[J]. European Journal of Inorganic Chemistry,2001,2001(9):2317-2325. doi: 10.1002/1099-0682(200109)2001:9<2317::AID-EJIC2317>3.0.CO;2-F
    [23] 张先龙, 孟凡跃, 吴琼, 等.FeEDTA络合-Na2SO3还原吸收NO性能[J]. 环境科学研究,2016,29(12):1847-1856.

    ZHANG X L, MENG F Y, WU Q, et al. Experimental study on complexing absorption of NO using FeEDTA solution and reduction with Na2SO3 solution[J]. Research of Environmental Sciences,2016,29(12):1847-1856.
    [24] LU B H, JIANG Y, CAI L L, et al. Enhanced biological removal of NOx from flue gas in a biofilter by Fe(Ⅱ)Cit/Fe(Ⅱ)EDTA absorption[J]. Bioresource Technology,2011,102(17):7707-7712. doi: 10.1016/j.biortech.2011.05.086
    [25] CHEN J, WU J L, WANG J, et al. A mass-transfer model of nitric oxide removal in a rotating drum biofilter coupled with Fe(EDTA) absorption[J]. Industrial & Engineering Chemistry Research,2018,57(24):8144-8151.
    [26] ZHANG D J, REN L L, YAO Z B, et al. Removal of nitrogen oxide based on anammox through Fe(Ⅱ)EDTA absorption[J]. Energy & Fuels,2017,31(7):7247-7255.
    [27] SANTIAGO D E O, JIN H F, LEE K. The influence of ferrous-complexed EDTA as a solubilization agent and its auto-regeneration on the removal of nitric oxide gas through the culture of green alga Scenedesmus sp[J]. Process Biochemistry,2010,45(12):1949-1953. doi: 10.1016/j.procbio.2010.04.003
    [28] 张春燕, 赵景开, 郭天蛟, 等.络合吸收-生物还原烟气脱硝系统的研究进展[J]. 高校化学工程学报,2018,32(6):1235-1244. doi: 10.3969/j.issn.1003-9015.2018.06.001

    ZHANG C Y, ZHAO J K, GUO T J, et al. Chemical absorption-biological reduction processes for NOx reduction: a review[J]. Journal of Chemical Engineering of Chinese Universities,2018,32(6):1235-1244. doi: 10.3969/j.issn.1003-9015.2018.06.001
    [29] 赵景开. 化学吸收—生物还原耦合体系处理烟气中NOx的动力学研究及过程模拟[D]. 杭州: 浙江大学, 2018.
    [30] van der MAAS P, van de SANDT T, KLAPWIJK B, et al. Biological reduction of nitric oxide in aqueous Fe(Ⅱ)EDTA solutions[J]. Biotechnology Progress,2003,19(4):1323-1328.
    [31] ZHANG S H, MI X H, CAI L L, et al. Evaluation of complexed NO reduction mechanism in a chemical absorption-biological reduction integrated NOx removal system[J]. Applied Microbiology and Biotechnology,2008,79(4):537-544. doi: 10.1007/s00253-008-1469-3
    [32] KUMARASWAMY R, van DONGEN U, KUENEN J G, et al. Characterization of microbial communities removing nitrogen oxides from flue gas: the BioDeNOx process[J]. Applied and Environmental Microbiology,2005,71(10):6345-6352. doi: 10.1128/AEM.71.10.6345-6352.2005
    [33] LIU N, JIANG Y, ZHANG L, et al. Evaluation of NOx removal from flue gas by a chemical absorption-biological reduction integrated system: glucose consumption and utilization pathways[J]. Energy & Fuels,2014,28(12):7591-7598.
    [34] van der MAAS P, PENG S, KLAPWIJK B, et al. Enzymatic versus nonenzymatic conversions during the reduction of EDTA-chelated Fe(Ⅲ) in BioDeNOx reactors[J]. Environmental Science & Technology,2005,39(8):2616-2623.
    [35] ZHOU Z M, JING G H, ZHENG X J. Reduction of Fe(Ⅲ)EDTA by Klebsiella sp. strain FD-3 in NOx scrubber solutions[J]. Bioresource Technology,2013,132:210-216. doi: 10.1016/j.biortech.2013.01.022
    [36] DONG X Y, ZHANG Y, ZHOU J T, et al. Reduction of Fe(Ⅲ)EDTA in a NOx scrubber liquor by a denitrifying bacterium and the effects of inorganic sulfur compounds on this process[J]. Bioresource Technology,2012,120:127-132. doi: 10.1016/j.biortech.2012.06.005
    [37] LI W, WU C Z, ZHANG S H, et al. Experimental study on the inhibition of biological reduction of Fe(Ⅲ)EDTA in NOx absorption solution[J]. Journal of Zhejiang University Science B,2005,6(10):1005-1008.
    [38] LI W, WU C Z, ZHANG S H, et al. Evaluation of microbial reduction of Fe(Ⅲ)EDTA in a chemical absorption-biological reduction integrated NOx removal system[J]. Environmental Science & Technology,2007,41(2):639-644.
    [39] LI N, ZHANG Y, LI Y M, et al. Reduction of Fe(Ⅱ)EDTA-NO using Paracoccus denitrificans and changes of Fe(Ⅱ)EDTA in the system[J]. Journal of Chemical Technology & Biotechnology,2013,88(2):311-316.
    [40] WEN X Y, XU H, HUANG S B, et al. Simultaneous removal of sulphur dioxide and nitric oxide at different oxygen concentrations in a thermophilic biotrickling filter (BTF): evaluation of removal efficiency, intermediates interaction and characterisation of microbial communities[J]. Bioresource Technology,2019,294:122150. doi: 10.1016/j.biortech.2019.122150
    [41] WANG Y L, LI J J, HUANG S B, et al. Evaluation of NOx removal from flue gas and Fe(Ⅱ)EDTA regeneration using a novel BTF-ABR integrated system[J]. Journal of Hazardous Materials,2021,415:125741. doi: 10.1016/j.jhazmat.2021.125741
    [42] DURMAZPINAR S, ILHAN N, DEMIR G, et al. Biological NOx removal by denitrification process in a jet-loop bioreactor: system performance and model development[J]. Environmental Technology,2014,35(11):1358-1366. doi: 10.1080/09593330.2013.868529
    [43] CHEN J, YANG X A, YU J M, et al. Investigation of effect and process of nitric oxide removal in rotating drum biofilter coupled with absorption by Fe(Ⅱ) (EDTA)[J]. Environmental Science,2012,33(2):539-544.
    [44] LI H, HUANG S B, WEI Z D, et al. Performance of a new suspended filler biofilter for removal of nitrogen oxides under thermophilic conditions and microbial community analysis[J]. Science of the Total Environment,2016,562:533-541. doi: 10.1016/j.scitotenv.2016.04.084
    [45] XIA Y F, CHEN H, ZHAO J K, et al. Shifts of biomass and microbial community structure in response to current densities in a biofilm electrode reactor for NOx removal[J]. Energy & Fuels,2019,33(6):5415-5421.
    [46] DAGHIO M, ESPINOZA-TOFALOS A, LEONI B, et al. Bioelectrochemical BTEX removal at different voltages: assessment of the degradation and characterization of the microbial communities[J]. Journal of Hazardous Materials,2018,341:120-127. doi: 10.1016/j.jhazmat.2017.07.054
    [47] ZHAO J K, ZHANG C Y, LI M F, et al. Two-stage chemical absorption-biological reduction system for NO removal: model development and footprint estimation[J]. Energy & Fuels,2017,31(8):8454-8461.
    [48] ZHAO J K, FENG K, LIU S H, et al. Kinetics of biocathodic electron transfer in a bioelectrochemical system coupled with chemical absorption for NO removal[J]. Chemosphere,2020,249:126095. doi: 10.1016/j.chemosphere.2020.126095
    [49] KUMARASWAMY R, KUENEN J G, KLEEREBEZEM R, et al. Structure of microbial communities performing the simultaneous reduction of Fe(Ⅱ)EDTA-NO2− and Fe(Ⅲ)EDTA[J]. Applied Microbiology and Biotechnology,2006,73(4):922-931. doi: 10.1007/s00253-006-0542-z
    [50] DONG X Y, ZHANG Y, ZHOU J T, et al. Evaluation of simultaneous reduction of Fe(Ⅱ)EDTA-NO and Fe(Ⅲ)EDTA by a bacterial pure culture[J]. Journal of Chemical Technology & Biotechnology,2014,89(1):111-116.
    [51] 李梅芳. 络合吸收—生物还原两段式烟气脱硝系统的性能研究与参数优化[D]. 杭州: 浙江大学, 2017.
    [52] 陈浚, 王智晔, 蒋轶锋, 等.生物转鼓过滤器反硝化去除NO过程中微生物群落结构多样性解析[J]. 环境科学,2008,29(4):1092-1098. doi: 10.3321/j.issn:0250-3301.2008.04.041

    CHEN J, WANG Z Y, JIANG Y F, et al. Microbial diversity analysis in rotating drum biofilter for nitric oxide denitrifying removal[J]. Environmental Science,2008,29(4):1092-1098. doi: 10.3321/j.issn:0250-3301.2008.04.041
    [53] 林建国, 宰菲.生物还原耦合化学吸收法脱氮影响因素[J]. 生物化工,2019,5(5):65-67. doi: 10.3969/j.issn.2096-0387.2019.05.016

    LIN J G, ZAI F. Study on influencing factors of nitrogen removal by bioreduction coupled chemical absorption method[J]. Biological Chemical Engineering,2019,5(5):65-67. doi: 10.3969/j.issn.2096-0387.2019.05.016
    [54] LI H, HUANG S B, ZHOU S F, et al. Study of extracellular polymeric substances in the biofilms of a suspended biofilter for nitric oxide removal[J]. Applied Microbiology and Biotechnology,2016,100(22):9733-9743. doi: 10.1007/s00253-016-7824-x
    [55] 殷祥男, 房晶瑞, 王俊杰, 等.Fe(Ⅱ)EDTA溶液脱除NO实验研究[J]. 工业安全与环保,2017,43(10):88-92. doi: 10.3969/j.issn.1001-425X.2017.10.023

    YIN X N, FANG J R, WANG J J, et al. Removal of NO by Fe(Ⅱ)EDTA solution[J]. Industrial Safety and Environmental Protection,2017,43(10):88-92. doi: 10.3969/j.issn.1001-425X.2017.10.023
    [56] LI W, ZHAO J K, ZHANG L, et al. Pathway of FeEDTA transformation and its impact on performance of NOx removal in a chemical absorption-biological reduction integrated process[J]. Scientific Reports,2016,6:18876. doi: 10.1038/srep18876
    [57] WANG L K, CHEN X M, WEI W, et al. Biological reduction of nitric oxide for efficient recovery of nitrous oxide as an energy source[J]. Environmental Science & Technology,2021,55(3):1992-2005.
    [58] CHEN J, WANG J, ZHENG J, et al. Prediction and inhibition of the N2O accumulation in the BioDeNOx process for NOx removal from flue gas[J]. Bioprocess and Biosystems Engineering,2016,39(12):1859-1865. doi: 10.1007/s00449-016-1660-3
    [59] XIE P, LI C L, SHAO B, et al. Simultaneous removal of carbon dioxide, sulfur dioxide and nitric oxide in a biofilter system: optimization operating conditions, removal efficiency and bacterial community[J]. Chemosphere,2021,276:130084. doi: 10.1016/j.chemosphere.2021.130084
    [60] RAZAVIARANI V, RUIZ-URIGÜEN M, JAFFÉ P R. Denitrification of nitric oxide using hollow fiber membrane bioreactor;effect of nitrate and nitric oxide loadings on the reactor performance and microbiology[J]. Waste and Biomass Valorization,2019,10(7):1989-2000. □ doi: 10.1007/s12649-018-0223-z
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  155
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 网络出版日期:  2022-11-25

目录

    /

    返回文章
    返回