留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

伊逊河春汛期水质波动原因解析

李越 薛浩 孟凡生 张铃松 梁朱明 张道萍 徐静

李越,薛浩,孟凡生,等.伊逊河春汛期水质波动原因解析[J].环境工程技术学报,2022,12(6):2011-2019 doi: 10.12153/j.issn.1674-991X.20210403
引用本文: 李越,薛浩,孟凡生,等.伊逊河春汛期水质波动原因解析[J].环境工程技术学报,2022,12(6):2011-2019 doi: 10.12153/j.issn.1674-991X.20210403
LI Y,XUE H,MENG F S,et al.Cause analysis of water quality fluctuation of Yixun River in spring flood season[J].Journal of Environmental Engineering Technology,2022,12(6):2011-2019 doi: 10.12153/j.issn.1674-991X.20210403
Citation: LI Y,XUE H,MENG F S,et al.Cause analysis of water quality fluctuation of Yixun River in spring flood season[J].Journal of Environmental Engineering Technology,2022,12(6):2011-2019 doi: 10.12153/j.issn.1674-991X.20210403

伊逊河春汛期水质波动原因解析

doi: 10.12153/j.issn.1674-991X.20210403
基金项目: 承德国家可持续发展议程创新示范区建设科技专项(202008F010)
详细信息
    作者简介:

    李越(1997—),男,硕士,主要从事河流水环境监测与管理研究,1062477465@qq.com

    通讯作者:

    徐静(1985—),女,高级工程师,硕士,主要从事市政设计研究,19032336@qq.com

  • 中图分类号: X522

Cause analysis of water quality fluctuation of Yixun River in spring flood season

  • 摘要:

    为探究伊逊河春汛期水质波动的主要原因,分别于2020年12月和2021年3月对伊逊河流域进行采样调查,在水环境因子时空特征分析的基础上,使用三维荧光光谱结合平行因子分析、荧光特征分析和Spearman秩相关分析,解析水体污染物的荧光特性和来源特征。结果表明:伊逊河春汛期水质明显恶化,Ⅴ类及劣Ⅴ类水体占比由14.29%升至88.24%,主要超标因子为CODCr、TP和CODMn;水体溶解性有机物(DOM)识别出3种荧光组分〔UVC类腐殖质(C1)、UVA类腐殖质(C2)和类色氨酸(C3)〕,类腐殖质总贡献率接近80%;冰封期和春汛期各采样点位水体溶解性有机物的荧光指数(FI)分别为1.65~1.88和1.49~1.75,自生源指数(BIX)分别为0.76~1.31和0.65~0.99,腐殖化指数(HIX)分别为0.10~7.00和0.40~6.00;春汛期伊逊河水体DOM表现出更强的腐殖性和较弱的近期自生源特性,陆源贡献比例显著提高;荧光参数FI、BIX与DOC、TP、CODCr和CODMn等水质参数呈显著负相关(R>0.6,P<0.01),春汛期水体DOC、TP等污染物浓度升高主要受高腐殖质背景、水土流失及农业面源污染的影响。

     

  • 图  1  伊逊河采样点分布

    Figure  1.  Distribution of sampling points in Yixun River Basin

    图  2  冰封期、春汛期水环境因子对比

    Figure  2.  Comparison of water environmental factors in freezing season and spring flood season

    图  3  基于平行因子分析法的伊逊河冰封期和春汛期荧光组分

    Figure  3.  Fluorescence components identified by PARAFAC model in Yixun River in freezing season and spring flood season

    图  4  冰封期、春汛期DOM的BIX-HIX分布

    Figure  4.  BIX-HIX distribution of DOM in freezing season and spring flood season

    表  1  伊逊河水体DOM荧光组分特征

    Table  1.   Characteristics of DOM fluorescent components in Yixun River

    荧光组分Ex/Em/nm数据来源
    UVC类腐殖质(C1)240(315)/410本研究(冰封期)
    245(310)/420本研究(春汛期)
    <250(<325)/438文献[27]
    <250(<305)/412~420文献[12]
    250(305)/412文献[28]
    250(325)/416文献[29]
    UVA类腐殖质(C2)270(365)/480本研究(冰封期)
    270(365)/480本研究(春汛期)
    240(370)/480文献[30]
    270(360)/478文献[29]
    255(350)/471文献[22]
    类色氨酸(C3)230(275)/345本研究(冰封期)
    225(275)/345本研究(春汛期)
    <250(<280)/340文献[27]
    <250(<280)/360文献[18]
    <225(<285)/344文献[22]
    下载: 导出CSV

    表  2  水体荧光参数与水质参数的相关性分析

    Table  2.   Correlation between water quality parameters and fluorescence parameters of DOM samples

    项目ECORPDOC浓度CODCrNH4 +-N浓度TP浓度TN浓度CODMnBOD5FIBIX
    ORP0.34
    DOC浓度−0.41−0.13
    CODCr−0.30−0.050.86*
    NH4 +-N浓度−0.23−0.140.57*0.58*
    TP浓度−0.56*−0.100.67*0.67*0.72*
    TN浓度0.56*0.31−0.40−0.340.08−0.29
    CODMn−0.61*−0.170.81*0.80*0.61*0.81*−0.52*
    BOD5−0.20−0.270.65*0.79*0.65*0.60*−0.200.75*
    FI0.66*0.48−0.66*−0.58*−0.37−0.65*0.57*−0.77*−0.57*
    BIX0.81*0.22−0.66*−0.63*−0.40−0.73*0.60*−0.72*−0.360.76*
    HIX−0.53*−0.120.030.00−0.210.24−0.490.07−0.25−0.22−0.56*
      注:*表示P<0.01。
    下载: 导出CSV
  • [1] 任晓庆, 杨中文, 张远, 等.滦河流域水生态承载力评估研究[J]. 水资源与水工程学报,2019,30(5):72-79.

    REN X Q, YANG Z W, ZHANG Y, et al. Evaluation of hydro-ecological carrying capacity (HECC) in Luanhe River Basin[J]. Journal of Water Resources and Water Engineering,2019,30(5):72-79.
    [2] 杨志勇, 于赢东, 王建华, 等.气候变化对伊逊河流域水资源量的影响[J]. 水科学进展,2011,22(2):175-181.

    YANG Z Y, YU Y D, WANG J H, et al. Climate change and its impact on water resources in Yixun River Basin[J]. Advances in Water Science,2011,22(2):175-181.
    [3] SILVA M M V G, GOMES E M C, ISAÍAS M, et al. Spatial and seasonal variations of surface and groundwater quality in a fast-growing city: Lubango, Angola[J]. Environmental Earth Sciences,2017,76(23):1-17.
    [4] XU G Y, REN X D, YANG Z H, et al. Influence of landscape structures on water quality at multiple temporal and spatial scales: a case study of Wujiang River Watershed in Guizhou[J]. Water,2019,11(1):159. doi: 10.3390/w11010159
    [5] 张道萍, 张铃松, 孟凡生, 等.黑龙江流域典型断面水体DOM荧光特性分析[J]. 环境科学研究,2021,34(5):1099-1110. doi: 10.13198/j.issn.1001-6929.2020.08.08

    ZHANG D P, ZHANG L S, MENG F S, et al. Fluorescence characteristics analysis of DOM in typical section of Heilongjiang River Basin[J]. Research of Environmental Sciences,2021,34(5):1099-1110. doi: 10.13198/j.issn.1001-6929.2020.08.08
    [6] 邵田田, 李柳阳, 王涛, 等.辽河流域河流秋季CDOM光学特性及影响因素研究[J]. 环境科学学报,2018,38(4):1558-1568. doi: 10.13671/j.hjkxxb.2017.0410

    SHAO T T, LI L Y, WANG T, et al. CDOM optical characteristics and influences factors affected on them for rivers in Liaohe River Watershed in autumn[J]. Acta Scientiae Circumstantiae,2018,38(4):1558-1568. doi: 10.13671/j.hjkxxb.2017.0410
    [7] PARK J H, KALBITZ K, MATZNER E. Resource control on the production of dissolved organic carbon and nitrogen in a deciduous forest floor[J]. Soil Biology and Biochemistry,2002,34(6):813-822. doi: 10.1016/S0038-0717(02)00011-1
    [8] 白小梅, 李悦昭, 姚志鹏, 等.三维荧光指纹谱在水体污染溯源中的应用进展[J]. 环境科学与技术,2020,43(1):172-180. doi: 10.19672/j.cnki.1003-6504.2020.01.025

    BAI X M, LI Y Z, YAO Z P, et al. Application progress of three-dimensional excitation emission matrix fluorescence spectroscopy in source tracing of water pollution[J]. Environmental Science & Technology,2020,43(1):172-180. doi: 10.19672/j.cnki.1003-6504.2020.01.025
    [9] 郭旭晶, 席北斗, 谢森, 等.乌梁素海沉积物孔隙水中溶解有机质的荧光及紫外光谱研究[J]. 环境工程学报,2012,6(2):440-444.

    GUO X J, XI B D, XIE S, et al. Study on fluorescence spectra and UV-vis spectra of dissolved organic matter collected from sediment pore water in Wuliangsuhai Lake[J]. Chinese Journal of Environmental Engineering,2012,6(2):440-444.
    [10] 隋志男, 郅二铨, 姚杰, 等.三维荧光光谱区域积分法解析辽河七星湿地水体DOM组成及来源[J]. 环境工程技术学报,2015,5(2):114-120.

    SUI Z N, ZHI E Q, YAO J, et al. Characterization of DOM composition and origin using three-dimensional fluorescence spectroscopy coupled with region integration method in Qixing Wetland[J]. Journal of Environmental Engineering Technology,2015,5(2):114-120.
    [11] STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial[J]. Limnology and Oceanography:Methods,2008,6(11):572-579. doi: 10.4319/lom.2008.6.572
    [12] 吕丽莎, 赵卫红, 苗辉.三维荧光结合平行因子分析在东海溶解有机物研究中的应用[J]. 光谱学与光谱分析,2013,33(3):653-658. doi: 10.3964/j.issn.1000-0593(2013)03-0653-06

    LÜ L S, ZHAO W H, MIAO H. Application of excitation-emission matrix spectrum combined with parallel factor analysis in dissolved organic matter in East China Sea[J]. Spectroscopy and Spectral Analysis,2013,33(3):653-658. doi: 10.3964/j.issn.1000-0593(2013)03-0653-06
    [13] SANCHEZ N P, SKERIOTIS A T, MILLER C M. A PARAFAC-based long-term assessment of DOM in a multi-coagulant drinking water treatment scheme[J]. Environmental Science & Technology,2014,48(3):1582-1591.
    [14] MORADI S, SAWADE E, ARYAL R, et al. Tracking changes in organic matter during nitrification using fluorescence excitation-emission matrix spectroscopy coupled with parallel factor analysis (FEEM/PARAFAC)[J]. Journal of Environmental Chemical Engineering,2018,6(1):1522-1528. doi: 10.1016/j.jece.2018.02.003
    [15] HUA B, YANG J, LIU F J, et al. Characterization of dissolved organic matter/nitrogen by fluorescence excitation-emission matrix spectroscopy and X-ray photoelectron spectroscopy for watershed management[J]. Chemosphere,2018,201:708-715. doi: 10.1016/j.chemosphere.2018.03.043
    [16] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [17] 陈毅忠, 杜尔登, 王聿琳, 等.三维荧光组合PARAFAC分析评估城市水体DOM特征分布与来源[J]. 常州大学学报(自然科学版),2017,29(6):55-62.

    CHEN Y Z, DU E D, WANG Y L, et al. Distribution and source of DOM in urban water bodies by EEMs spectrum and PARAFAC analysis[J]. Journal of Changzhou University (Natural Science Edition),2017,29(6):55-62.
    [18] YANG X L, YU X B, CHENG J R, et al. Impacts of land-use on surface waters at the watershed scale in southeastern China: Insight from fluorescence excitation-emission matrix and PARAFAC[J]. Science of the Total Environment,2018,627:647-657. doi: 10.1016/j.scitotenv.2018.01.279
    [19] 刘东萍, 高红杰, 崔兵, 等.白塔堡河底泥DOM组成结构的荧光光谱与多元统计模型表征[J]. 环境工程技术学报,2021,11(2):249-257. doi: 10.12153/j.issn.1674-991X.20200204

    LIU D P, GAO H J, CUI B, et al. Fluorescence spectra and multivariate statistical model characterization of DOM composition structure of Baitapu River Sediment[J]. Journal of Environmental Engineering Technology,2021,11(2):249-257. doi: 10.12153/j.issn.1674-991X.20200204
    [20] 张欢. 派河和南淝河溶解性有机质(DOM)光谱分析及污染源解析[D]. 合肥: 合肥工业大学, 2019.
    [21] 王迪, 张飞, 张兆永, 等.新疆艾比湖流域枯、丰水期三维荧光光谱特性及其与水质的关系[J]. 湖泊科学,2020,32(2):483-495. doi: 10.18307/2020.0217

    WANG D, ZHANG F, ZHANG Z Y, et al. Characteristics of three-dimensional fluorescence spectra and its correlation with water quality of surface water during dry and wet seasons in Lake Ebinur Watershed, Xinjiang[J]. Journal of Lake Sciences,2020,32(2):483-495. doi: 10.18307/2020.0217
    [22] ZHANG Y L, ZHANG E L, YIN Y, et al. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude[J]. Limnology and Oceanography,2010,55(6):2645-2659. doi: 10.4319/lo.2010.55.6.2645
    [23] 薛浩, 王业耀, 孟凡生, 等.汤旺河着生硅藻群落及其与环境因子的关系[J]. 环境科学,2020,41(3):1256-1264.

    XUE H, WANG Y Y, MENG F S, et al. Community of benthic diatoms and their relationship with aquatic environmental factors in the Tangwang River, China[J]. Environmental Science,2020,41(3):1256-1264.
    [24] 林田野.基于滦河流域水环境治理与保护的思考[J]. 水资源开发与管理,2020,18(1):14-17. doi: 10.16616/j.cnki.10-1326/TV.2020.01.04

    LIN T Y. Thinking on water environment management and protection in the Luanhe River Basin[J]. Water Resources Development and Management,2020,18(1):14-17. doi: 10.16616/j.cnki.10-1326/TV.2020.01.04
    [25] 王子为, 钱昶, 张成波, 等.伊逊河流域总磷污染来源解析[J]. 环境科学研究,2020,33(10):2290-2297. doi: 10.13198/j.issn.1001-6929.2020.05.12

    WANG Z W, QIAN C, ZHANG C B, et al. Source apportionment of total phosphorus pollution in Yixun River Basin[J]. Research of Environmental Sciences,2020,33(10):2290-2297. doi: 10.13198/j.issn.1001-6929.2020.05.12
    [26] 陈庆锋, 郭贝贝. 我国北方山区河流生态综合治理模式探究[C]//2015年水资源生态保护与水污染控制研讨会论文集. 北京: 中国环境科学学会, 2015: 241-246.
    [27] HOSEN J D, MCDONOUGH O T, FEBRIA C M, et al. Dissolved organic matter quality and bioavailability changes across an urbanization gradient in headwater streams[J]. Environmental Science & Technology,2014,48(14):7817-7824.
    [28] STEDMON C A, MARKAGER S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis[J]. Limnology and Oceanography,2005,50(2):686-697. doi: 10.4319/lo.2005.50.2.0686
    [29] STEDMON C A, MARKAGER S, BRO R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy[J]. Marine Chemistry,2003,82(3/4):239-254.
    [30] KOWALCZUK P, TILSTONE G H, ZABŁOCKA M, et al. Composition of dissolved organic matter along an atlantic meridional transect from fluorescence spectroscopy and parallel factor analysis[J]. Marine Chemistry,2013,157:170-184. doi: 10.1016/j.marchem.2013.10.004
    [31] 颜秉斐, 彭剑峰, 邓齐玉, 等.白塔堡河水体DOM分布特征及来源[J]. 环境工程技术学报,2019,9(3):225-232. doi: 10.12153/j.issn.1674-991X.2019.02.190

    YAN B F, PENG J F, DENG Q Y, et al. DOM distribution characteristics and source analysis of Baitabu River[J]. Journal of Environmental Engineering Technology,2019,9(3):225-232. doi: 10.12153/j.issn.1674-991X.2019.02.190
    [32] BAKER A, INVERARITY R. Protein-like fluorescence intensity as a possible tool for determining river water quality[J]. Hydrological Processes,2004,18(15):2927-2945. doi: 10.1002/hyp.5597
    [33] 张博, 高建文, 范绍锦, 等.南湖水系溶解性有机质来源及时空分布特征[J]. 环境工程技术学报,2020,10(6):912-919. doi: 10.12153/j.issn.1674-991X.20200066

    ZHANG B, GAO J W, FAN S J, et al. Origin and spatial-temporal distribution characteristics of dissolved organic matter in Nanhu Lake water system[J]. Journal of Environmental Engineering Technology,2020,10(6):912-919. doi: 10.12153/j.issn.1674-991X.20200066
    [34] HUGUET A, VACHER L, RELEXANS S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry,2009,40(6):706-719. doi: 10.1016/j.orggeochem.2009.03.002
    [35] 陶澍, 陈静生, 邓宝山, 等.中国东部主要河流河水腐殖酸的起源、含量及地域分异规律[J]. 环境科学学报,1988,8(3):286-294. doi: 10.13671/j.hjkxxb.1988.03.004

    TAO S, CHEN J S, DENG B S, et al. Contents of stream humic substances in the east of China[J]. Acta Scientiae Circumstantiae,1988,8(3):286-294. doi: 10.13671/j.hjkxxb.1988.03.004
    [36] 吴立钰, 张璇, 李冲, 等.气候变化和人类活动对伊逊河流域径流变化的影响[J]. 自然资源学报,2020,35(7):1744-1756. doi: 10.31497/zrzyxb.20200717

    WU L Y, ZHANG X A, LI C, et al. Impacts of climate change and human activities on runoff variations in Yixun River Basin[J]. Journal of Natural Resources,2020,35(7):1744-1756. doi: 10.31497/zrzyxb.20200717
    [37] 孙厚云, 卫晓锋, 张晓敏, 等.河北承德中部伊逊河红旗地区土壤生源要素空间分布格局及其影响因素[J]. 矿产勘查,2021,12(4):1008-1018. doi: 10.3969/j.issn.1674-7801.2021.04.023

    SUN H Y, WEI X F, ZHANG X M, et al. Spatial variation and influencing factors of soil biogenic elements distribution in Hongqi Town of Yixun River Basin in Chengde City[J]. Mineral Exploration,2021,12(4):1008-1018. □ doi: 10.3969/j.issn.1674-7801.2021.04.023
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  99
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-12
  • 网络出版日期:  2022-11-25

目录

    /

    返回文章
    返回