留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西南某退役化工厂场地地下水污染特征及污染物迁移规律分析

李书迪 谢湉 张荣海 张芊 苏丽丽 张德明 黄锦孙 周永信

李书迪,谢湉,张荣海,等.西南某退役化工厂场地地下水污染特征及污染物迁移规律分析[J].环境工程技术学报,2022,12(5):1555-1563 doi: 10.12153/j.issn.1674-991X.20210382
引用本文: 李书迪,谢湉,张荣海,等.西南某退役化工厂场地地下水污染特征及污染物迁移规律分析[J].环境工程技术学报,2022,12(5):1555-1563 doi: 10.12153/j.issn.1674-991X.20210382
LI S D,XIE T,ZHANG R H,et al.Analysis of groundwater pollution characteristics and pollutant migration law of a decommissioned chemical plant site in Southwest China[J].Journal of Environmental Engineering Technology,2022,12(5):1555-1563 doi: 10.12153/j.issn.1674-991X.20210382
Citation: LI S D,XIE T,ZHANG R H,et al.Analysis of groundwater pollution characteristics and pollutant migration law of a decommissioned chemical plant site in Southwest China[J].Journal of Environmental Engineering Technology,2022,12(5):1555-1563 doi: 10.12153/j.issn.1674-991X.20210382

西南某退役化工厂场地地下水污染特征及污染物迁移规律分析

doi: 10.12153/j.issn.1674-991X.20210382
基金项目: 国家重点研发计划项目(2020YFC1807104);广西重点研发计划项目(桂科AB18281002);广西自然科学基金项目(2019GXNSFAA185019)
详细信息
    作者简介:

    李书迪(1994—),男,工程师,硕士,主要研究方向为土壤及地下水调查和修复,lishudi1017@hotmail.com

    通讯作者:

    谢湉(1983—),女,高级工程师,博士,主要研究方向为土壤及地下水调查和修复,tianckstar@163.com

    周永信(1981—),男,高级工程师,硕士,主要研究方向为土壤及地下水调查和修复,zhouyx@bossco.cc

  • 中图分类号: X523

Analysis of groundwater pollution characteristics and pollutant migration law of a decommissioned chemical plant site in Southwest China

  • 摘要:

    针对某退役化工厂场地受有机物污染的地下水含水层,开展地下水污染特征调查,通过风险评价模型、DRASTIC模型分别对研究区进行人体健康风险及地下水脆弱性评价,构建污染物地下水迁移扩散模型,进一步剖析典型污染物迁移扩散的影响因素及动力学模式。结果表明:研究区地下水受1,2-二氯乙烷、苯、三氯甲烷的污染,1,2-二氯乙烷的总致癌风险为4.00×10−6,超过人体健康风险可接受水平,主要暴露途径为吸入室内空气中来自地下水的气态污染物;研究区地下水脆弱性指数为4.912~5.305,整体处于中等脆弱性水平,地下水系统抵御污染能力较强,地下水埋深、净补给量和含水层厚度是影响地下水脆弱性的主要因素;1,2-二氯乙烷迁移扩散受地下水对流作用、含水介质吸附阻滞作用、生物化学作用共同影响,地下水对流作用是其迁移扩散的主要动力,含水介质吸附阻滞作用及生物化学作用对于其分布范围影响显著。

     

  • 图  1  地下水调查采样点分布

    Figure  1.  Distribution of groundwater sampling points

    图  2  地下水中超标污染物浓度分布

    Figure  2.  Concentration distribution of pollutants exceeding standards in groundwater

    图  3  污染物风险贡献率

    Figure  3.  Pollutant risk contribution rate

    图  4  地下水DI及DRASTIC模型影响因子贡献率

    Figure  4.  Contribution rate of influencing factors of groundwater DI and DRASTIC model

    图  5  1,2-二氯乙烷在含水层中迁移动力学模式

    Figure  5.  Mechanical model of migration of 1,2-dichloroethane in aquifer

    表  1  污染物毒性参数及暴露参数[12]

    Table  1.   Toxicity parameters and exposure parameters of pollutants

    污染物SF/
    〔(kg·d)/mg〕
    RfD/
    〔mg/(kg·d)〕
    VFgwoa/
    (L/m3)
    VFgwia/
    (L/m3)
    1,2-二氯乙烷1.11×10−11.64×10−37.61×10−79.39×10−5
    3.32×10−27.04×10−33.16×10−64.31×10−4
    氯仿9.80×10−22.30×10−21.87×10−62.49×10−4
    下载: 导出CSV

    表  2  DRASTIC模型指标体系分级和权重

    Table  2.   Grading and weight of DRASTIC model index system

    评分指标
    D/mR/mmA/mST/%IC/(m/d)
    1>300~51>50非胀缩性黏土>10黏土0~4
    225~3051~7145~50黏质壤土(黏土)9~10亚黏土4~12
    320~2571~9240~45粉质壤土8~9亚砂土12~20
    415~2092~11735~40壤土7~8粉砂20~30
    510~15117~14730~35砂质壤土(砂土)6~7粉细砂30~35
    68~10147~17825~30胀缩或凝聚性黏土5~6细砂35~40
    76~8178~21620~25粉砂、细砂4~5中砂40~60
    84~6216~23515~20砾石/中砂、粗砂3~4粗砂60~80
    92~4235~25410~15卵砾石2~3砂砾石80~100
    10<2>254<10薄层或缺失<2卵砾石>100
    权重5432153
    标准归一化权重0.2170.1740.1310.0870.0430.2170.131
    下载: 导出CSV

    表  3  地下水样品检测结果

    Table  3.   Test results of groundwater samples

    污染物评价标准1)/(μg/L)最大值/(μg/L)最小值/(μg/L)平均值/(μg/L)标准偏差检出率/%超标率/%最大超标倍数/倍
    1,2-二氯乙烷405074.7ND693.01334.873.153.8125.9
    120287.5ND21.661.123.13.81.4
    三氯甲烷300380ND27.784.919.211.50.27
    1,1,2-三氯乙烷6037.1ND6.113.819.200
    1,2-二氯丙烷6019.8ND5.613.026.900
    注:ND表示未检出。1)为GB/T 14848—2017的Ⅳ类水质标准。
    下载: 导出CSV

    表  4  健康风险评价结果

    Table  4.   Results of health risk assessment

    健康风险暴露途径1,2-二氯乙烷三氯甲烷
    致癌风险CRiov31.08×10−87.59×10−101.75×10−9
    CRiiv23.99×10−63.11×10−77.00×10−7
    CRn4.00×10−63.12×10−77.02×10−7
    危害商HQiov36.67×10−43.66×10−58.75×10−6
    HQiiv22.47×10−11.50×10−23.51×10−3
    HIn2.48×10−11.50×10−23.51×10−3
    下载: 导出CSV
  • [1] 倪碧珩, 施维林, 陈洁, 等.某电镀厂地块重金属污染特征与健康风险空间分布评价[J]. 环境工程技术学报,2022,12(3):878-885. doi: 10.12153/j.issn.1674-991X.20210142

    NI B Q, SHI W L CHEN J, et al. Pollution analysis and spatial distribution of health risk of heavy metals in the electroplating plant[J]. Journal of Environmental Engineering Technology,2022,12(3):878-885. doi: 10.12153/j.issn.1674-991X.20210142
    [2] 吕占禄, 张金良, 邹天森, 等.燃煤电厂周边土壤重金属污染特征及评价[J]. 环境工程技术学报,2019,9(6):720-731. doi: 10.12153/j.issn.1674-991X.2019.05.240

    LÜ Z L, ZHANG J L, ZOU T S, et al. Characteristics and evaluation of heavy metal pollution in soil around coal-fired power plants[J]. Journal of Environmental Engineering Technology,2019,9(6):720-731. doi: 10.12153/j.issn.1674-991X.2019.05.240
    [3] 赵利刚, 蒲生彦, 杨金艳, 等.某铬渣堆场周边土壤地下水Cr6+污染特征研究[J]. 环境工程,2015,33(2):117-121.

    ZHAO L G, PU S Y, YANG J Y, et al. The Cr(Ⅵ) pollution characteristics of groundwater and soil in the surroundings of a chromium slag site[J]. Environmental Engineering,2015,33(2):117-121.
    [4] 马建锋, 李彦武, 史聆聆, 等.中原经济区平原区地下水脆弱性评价[J]. 环境工程,2016,34(8):149-153,148. doi: 10.13205/j.hjgc.201608031

    MA J F, LI Y W, SHI L L, et al. Groundwater vulnerability assessment in central Plains economic region[J]. Environmental Engineering,2016,34(8):149-153,148. doi: 10.13205/j.hjgc.201608031
    [5] MALLIK S, BHOWMIK T, MISHRA U, et al. Local scale groundwater vulnerability assessment with an improved DRASTIC model[J]. Natural Resources Research,2021,30(3):2145-2160. doi: 10.1007/s11053-021-09839-z
    [6] HU X J, MA C M, QI H H, et al. Groundwater vulnerability assessment using the GALDIT model and the improved DRASTIC model: a case in Weibei Plain, China[J]. Environmental Science and Pollution Research,2018,25(32):32524-32539. doi: 10.1007/s11356-018-3196-3
    [7] 吴建强, 王敏, 陈宇, 等.平原河网地区地下水脆弱性评价体系构建及应用[J]. 生态环境学报,2017,26(11):1821-1828. doi: 10.16258/j.cnki.1674-5906.2017.11.001

    WU J Q, WANG M, CHEN Y, et al. Construction and application of groundwater vulnerability assessment method system in plain river network area[J]. Ecology and Environmental Sciences,2017,26(11):1821-1828. doi: 10.16258/j.cnki.1674-5906.2017.11.001
    [8] 奚旭, 孙才志, 吴彤, 等.下辽河平原地下水脆弱性的时空演变[J]. 生态学报,2016,36(10):3074-3083.

    XI X, SUN C Z, WU T, et al. Spatial-temporal evolution of groundwater vulnerability in the lower reaches of the Liaohe River Plain[J]. Acta Ecologica Sinica,2016,36(10):3074-3083.
    [9] 徐颖, 李梦雪, 董心月, 等.氟化工园区及周边地下水健康风险及脆弱性评价[J]. 环境科学学报,2020,40(6):2300-2310. doi: 10.13671/j.hjkxxb.2020.0023

    XU Y, LI M X, DONG X Y, et al. Health risk and vulnerability assessment of groundwater in fluorine chemical industrial and surrounding areas[J]. Acta Scientiae Circumstantiae,2020,40(6):2300-2310. doi: 10.13671/j.hjkxxb.2020.0023
    [10] MAMAT A, ZHANG Z Y, MAMAT Z, et al. Pollution assessment and health risk evaluation of eight (metalloid) heavy metals in farmland soil of 146 cities in China[J]. Environmental Geochemistry and Health,2020,42(11):3949-3963. doi: 10.1007/s10653-020-00634-y
    [11] ZHANG Z Y, MAMAT A, SIMAYI Z. Pollution assessment and health risks evaluation of (metalloid) heavy metals in urban street dust of 58 cities in China[J]. Environmental Science and Pollution Research,2019,26(1):126-140. doi: 10.1007/s11356-018-3555-0
    [12] 生态环境部. 建设用地土壤污染风险评估技术导则: HJ 25.3—2019[S]. 北京: 中国环境出版集团, 2019.
    [13] 于林弘, 陶志斌, 扈胜涛, 等.DRASTIC模型在地下水脆弱性评价中的应用[J]. 人民黄河,2020,42(增刊1):45-46.
    [14] AMIRI F, TABATABAIE T, ENTEZARI M. GIS-based DRASTIC and modified DRASTIC techniques for assessing groundwater vulnerability to pollution in Torghabeh-Shandiz of Khorasan County, Iran[J]. Arabian Journal of Geosciences,2020,13(12):1-16.
    [15] LAD S, AYACHIT R, KADAM A, et al. Groundwater vulnerability assessment using DRASTIC model: a comparative analysis of conventional, AHP, Fuzzy logic and Frequency ratio method[J]. Modeling Earth Systems and Environment,2019,5(2):543-553. doi: 10.1007/s40808-018-0545-7
    [16] JHARIYA D C, KUMAR T, PANDEY H K, et al. Assessment of groundwater vulnerability to pollution by modified DRASTIC model and analytic hierarchy process[J]. Environmental Earth Sciences,2019,78(20):1-20.
    [17] 朱飞, 熊丽君, 吴建强, 等.基于改进DRASTIC模型的平原河网地区地下水脆弱性评价[J]. 环境科学与技术,2020,43(2):187-193. doi: 10.19672/j.cnki.1003-6504.2020.02.028

    ZHU F, XIONG L J, WU J Q, et al. Groundwater vulnerability assessment in plain river network areas based on the improved DRASTIC model[J]. Environmental Science & Technology,2020,43(2):187-193. doi: 10.19672/j.cnki.1003-6504.2020.02.028
    [18] FETTER C W.污染水文地质学[M]. 周念清, 黄勇, 译. 北京: 高等教育出版社, 2011: 44-49.
    [19] 张人权, 梁杏, 靳孟贵. 水文地质学基础[M]. 6版. 北京: 地质出版社, 2011: 33-34.
    [20] MOJID M A, VEREECKEN H. On the physical meaning of retardation factor and velocity of a nonlinearly sorbing solute[J]. Journal of Hydrology,2005,302(1/2/3/4):127-136.
    [21] 徐铁兵, 刘思言, 阎秀兰, 等.某化肥厂污染场地土壤和地下水中氨氮分布特征及其非致癌风险评估[J]. 环境污染与防治,2021,43(2):211-216. doi: 10.15985/j.cnki.1001-3865.2021.02.014

    XU T B, LIU S Y, YAN X L, et al. Distribution characteristics and non-carcinogenic risk assessment of ammonia nitrogen in the soil and groundwater polluted by a chemical fertilizer contaminated site[J]. Environmental Pollution & Control,2021,43(2):211-216. doi: 10.15985/j.cnki.1001-3865.2021.02.014
    [22] 姜林, 钟茂生, 贾晓洋, 等.基于地下水暴露途径的健康风险评价及修复案例研究[J]. 环境科学,2012,33(10):3329-3335. doi: 10.13227/j.hjkx.2012.10.023

    JIANG L, ZHONG M S, JIA X Y, et al. Case study on groundwater health risk assessment and remediation strategy based on exposure pathway[J]. Environmental Science,2012,33(10):3329-3335. doi: 10.13227/j.hjkx.2012.10.023
    [23] 刘丽丽, 邓一荣, 林挺, 等.粤港澳大湾区典型化工地块地下水分层调查与风险评估[J]. 环境污染与防治,2021,43(1):67-72. doi: 10.15985/j.cnki.1001-3865.2021.01.013

    LIU L L, DENG Y R, LIN T, et al. Multi-layer sampling and health risk assessment of groundwater for a typical chemical contaminated site in Guangdong-Hong Kong-Macao Greater Bay Area[J]. Environmental Pollution & Control,2021,43(1):67-72. doi: 10.15985/j.cnki.1001-3865.2021.01.013
    [24] FAN C, WANG G S, CHEN Y C, et al. Risk assessment of exposure to volatile organic compounds in groundwater in Taiwan[J]. Science of the Total Environment,2009,407(7):2165-2174. doi: 10.1016/j.scitotenv.2008.12.015
    [25] 谢湉, 卢桂宁, 党志, 等.水动力控制强化碱活化过硫酸盐原位修复1, 2-二氯乙烷污染地下水[J]. 环境工程学报,2021,15(5):1577-1587. doi: 10.12030/j.cjee.202012156

    XIE T, LU G N, DANG Z, et al. Hydrodynamic control-enhanced alkali activated persulfate for in situ remediation of 1, 2-dichloroethane contaminated groundwater[J]. Chinese Journal of Environmental Engineering,2021,15(5):1577-1587. doi: 10.12030/j.cjee.202012156
    [26] 钱永. 1, 2, 3-三氯丙烷在地下水中的环境行为研究: 以某氯代烃有机污染场地为例[D]. 北京: 中国地质大学(北京), 2016: 58-59.
    [27] 何江涛, 程东会, 韩冰, 等.浅层地下水氯代烃污染天然衰减速率的估算[J]. 地学前缘,2006,13(1):140-144. doi: 10.3321/j.issn:1005-2321.2006.01.018

    HE J T, CHENG D H, HAN B, et al. Estimation of natural attenuation rate of chlorinate solvents contamination in shallow groundwater[J]. Earth Science Frontiers,2006,13(1):140-144. ⊗ doi: 10.3321/j.issn:1005-2321.2006.01.018
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  390
  • HTML全文浏览量:  191
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-04

目录

    /

    返回文章
    返回