留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环境水体中自由基的检测技术研究进展

卢成龙 常红 孙福红

卢成龙,常红,孙福红.环境水体中自由基的检测技术研究进展[J].环境工程技术学报,2022,12(1):70-80 doi: 10.12153/j.issn.1674-991X.20210322
引用本文: 卢成龙,常红,孙福红.环境水体中自由基的检测技术研究进展[J].环境工程技术学报,2022,12(1):70-80 doi: 10.12153/j.issn.1674-991X.20210322
LU C L,CHANG H,SUN F H.Progress on the detection technology of free radicals in waters[J].Journal of Environmental Engineering Technology,2022,12(1):70-80 doi: 10.12153/j.issn.1674-991X.20210322
Citation: LU C L,CHANG H,SUN F H.Progress on the detection technology of free radicals in waters[J].Journal of Environmental Engineering Technology,2022,12(1):70-80 doi: 10.12153/j.issn.1674-991X.20210322

环境水体中自由基的检测技术研究进展

doi: 10.12153/j.issn.1674-991X.20210322
基金项目: 国家自然科学基金项目(42077306)
详细信息
    作者简介:

    卢成龙(1996—),男,硕士研究生,主要从事自由基检测技术研发研究,18631668877@163.com

    通讯作者:

    常红(1977—),女,副教授,博士,主要从事新型污染物环境行为研究, changh@bjfu.edu.cn

    孙福红(1980—),女,研究员,博士,主要从事污染物环境行为与风险评估, sunfhiae@126.com

  • 中图分类号: X83

Progress on the detection technology of free radicals in waters

  • 摘要: 自由基化学性质高度活泼,极易发生得失电子的氧化还原反应,是环境水体中降解污染物的重要因素。自由基的环境鉴定和分析对揭示环境污染物降解转化机制具有重要意义。但由于自由基环境浓度极低、反应活性高、寿命短,再加上复杂环境基质的干扰效应,使其环境分析一直是研究的重点和难点。而且,目前的研究主要针对一些已知的自由基展开,对未知自由基的识别和鉴定研究较为匮乏。在系统总结典型自由基检测方法及其应用现状的基础上,阐述不同检测方法的优点和缺点,重点探讨适用于环境水体中羟基自由基等典型自由基的检测方法,并提出自旋捕获结合质谱分析技术具有特异性和高灵敏性的优点,可同时检测天然水体中多种自由基,并能够识别和鉴定未知自由基,是未来的研究方向。

     

  • 图  1  芬顿反应体系中·OH的ESR谱图[57]

    Figure  1.  ESR spectrum of ·OH in Fenton reaction system[57]

    图  2  Cu(Ⅱ)溶液和腐殖酸-Cu(Ⅱ)络合物溶液在光照0和120 s时的ESR谱图[60]

    Figure  2.  ESR spectrum of Cu (Ⅱ) solution and humic acid- Cu (Ⅱ) complex solution under illumination for 0 and 120 s[60]

    图  3  Fe2+与异丙苯过氧化氢反应中DMPO-·OH的ESI-MS谱图和MS/MS谱图[79]

    Figure  3.  ESI-MS and MS/MS spectra of DMPO-·OH in the reaction of Fe2+ with cumene hydroperoxide[79]

    表  1  用于ESR分析的自由基捕获剂

    Table  1.   Free radical trapping agents for ESR analysis

    捕获剂 结构 加合物结构 优点 缺点 数据来源
    DMPO 捕获速度较快,针对不同自由基其自旋加合物的ESR参数变化较大,易于区分不同自由基,对以O为中心的自由基(尤其是·OH)捕获效果好 自旋加合物寿命较短,易分解,易与微量金属离子反应 文献[62,65-67]
    PBN 易与C或O为中心的基团形成相对稳定的自旋加合物,寿命较长 加合物在ESR谱图表达不清晰 文献[62,68]
    4-POBN 水溶性较好 仅适用于检测pH为6~7条件下的·OH 文献[63,69]
    TMPO 捕获速度较快,其波谱对自由基识别敏感(尤其是·OH) 相比DMPO少1个βH,自旋加合物提供信息有限 文献[70]
    EMPO 常用于生物体系内可与氨基酸结合形成捕获效率更高的捕获体 自旋加合物不稳定,易分解 文献[71]
    TEMP 1O2具有良好捕获效率,其加合物稳定 对除1O2以外自由基捕获效率低,自旋加合物不稳定 文献[64,72]
    TEMPO 对过氧自由基、烷基自由基有良好捕获效率 1O2有猝灭作用,不适用于捕获1O2 文献[64,72]
    4-氰基-2,2-二甲基-2H-咪唑-1-氧化物
    (CDI)
    对以C为中心自由基、亚硫酸盐自由基有良好捕获效率 不适用于捕获·O2 文献[73]
    2,2,4-三甲基-2H-咪唑 1-氧化物
    (TMI)
    对以C为中心和以S为中心的自由基具有良好捕获效率 不适用于捕获·O2 文献[73]
    3-吡啶基-N-叔丁基硝酮
    (3-PyBN)
    pH为6条件下,与PBN相比,其加合物稳定性更好 加合物的寿命随着酸碱度的增加而缩短
    文献[74-75]
    下载: 导出CSV

    表  2  常用自由基检测方法对比

    Table  2.   Comparison of common free radicals detection methods

    检测方法 原理 特点
    分光光度法 利用部分自由基强氧化性改变底物的结构、性质和颜色,从而根据待测液光谱吸收的改变测定自由基浓度 经济,操作方便,分析迅速,准确性、灵敏度较低,实际环境样品中自由基的检测需考虑本底颜色带来的光谱吸收,检测限达1×10−6 mol/L
    化学发光法
    (CL)
    利用自由基与化学发光试剂反应产生化学发光,依据待测自由基的浓度与体系的化学发光强度在一定条件下呈线性定量关系的原理测定自由基浓度 灵敏度较高,检测速度快,操作简单,精度和选择性较差,检测限达1×10−9 mol/L
    高效液相色谱法
    (HPLC)
    以液体为流动相,自由基与捕获剂反应产物经色谱柱分离,进入检测器进行检测 灵敏度较高,快速,高效,反应过程复杂,干扰因素较多,检测限达10−11~10−9 g
    毛细管电泳法
    (CE)
    以弹性石英毛细管为分离通道,以高压直流电场为驱动力分离检测自由基与捕获剂反应产物 采样体积小,分离效率高,线性范围宽,选择性好,灵敏度较高,重现性差,检测限达2×10−8 mol/L
    电子自旋共振法
    (ESR)
    利用自旋捕获剂与自由基形成稳定性更高、寿命更长的自旋加合物,经电子自旋共振法检测自旋加合物,间接测定自由基浓度 简单有效,波谱信息易受样品基质干扰、特异性不强,结构信息有限,定量分析不够精确,检测限达10−8 mol/L
    质谱法
    (MS)
    自由基与自旋捕获剂形成的自旋加合物经电场和磁场作用后,按质荷比分离后进行准确鉴定、检测 高灵敏度,高特异性,样品用量少,分析速度快,可提供丰富结构信息,检测限可达10−13 mol/L
    下载: 导出CSV

    表  3  淬灭剂及其目标自由基

    Table  3.   Quenchers and their target free radicals

    淬灭剂 目标自由基
    甲醇(MeOH) ·OH/·SO4
    乙醇(EtOH) ·OH/·SO4
    异丙醇(IPA) ·OH/·SO4
    亚硝酸钠(NaNO2 ·OH/·SO4
    叔丁醇(TBA) ·OH(√)/·SO4
    抗坏血酸(AA) ·OH/·SO4(√)
    叠氮化钠(NaN3 1O2
    L-组氨酸(L-histidine) 1O2
    糠醇(FFA) 1O2
    苯醌(BQ) ·O2
    氯仿(CF) ·O2
      注:√表示主要目标自由基。
    下载: 导出CSV
  • [1] WANG G Y, IRADUKUNDA Y, SHI G F, et al. Hydroxyl, hydroperoxyl free radicals determination methods in atmosphere and troposphere[J]. Journal of Environmental Sciences,2021,99:324-335. doi: 10.1016/j.jes.2020.06.038
    [2] FUCHS H, DORN H P, BACHNER M, et al. Comparison of OH concentration measurements by DOAS and LIF during SAPHIR chamber experiments at high OH reactivity and low NO concentration[J]. Atmospheric Measurement Techniques,2012,5(7):1611-1626. doi: 10.5194/amt-5-1611-2012
    [3] SCHLOSSER E, BOHN B, BRAUERS T, et al. Intercomparison of two hydroxyl radical measurement techniques at the atmosphere simulation chamber SAPHIR[J]. Journal of Atmospheric Chemistry,2007,56(2):187-205. doi: 10.1007/s10874-006-9049-3
    [4] WANG G Y, JIA S M, NIU X L, et al. Detection of peroxyl radicals from polluted air by free radical reaction combined with liquid chromatography signal amplification technique[J]. Journal of Separation Science,2018,41(9):1930-1937. doi: 10.1002/jssc.201701152
    [5] LIANG C J, CHEN Y J, CHANG K J. Evaluation of persulfate oxidative wet scrubber for removing BTEX gases[J]. Journal of Hazardous Materials,2009,164(2/3):571-579.
    [6] QIU Q, LI G X, DAI Y, et al. Removal of antibiotic resistant microbes by Fe(II)-activated persulfate oxidation[J]. Journal of Hazardous Materials,2020,396:122733. doi: 10.1016/j.jhazmat.2020.122733
    [7] CANONICA S, KOHN T, MAC M, et al. Photosensitizer method to determine rate constants for the reaction of carbonate radical with organic compounds[J]. Environmental Science & Technology,2005,39(23):9182-9188.
    [8] SHAKED Y, ROSE A. Seas of superoxide[J]. Science,2013,340(6137):1176-1177. doi: 10.1126/science.1240195
    [9] HAO Z Y, MA J Z, MIAO C Y, et al. Carbonate radical oxidation of cylindrospermopsin (cyanotoxin): kinetic studies and mechanistic consideration[J]. Environmental Science & Technology,2020,54(16):10118-10127.
    [10] LIU Y Z, SUN H W, ZHANG L Q, et al. Photodegradation behaviors of 17β-estradiol in different water matrixes[J]. Process Safety and Environmental Protection,2017,112:335-341. doi: 10.1016/j.psep.2017.08.044
    [11] WANG Y F, GENG Q J, YANG J M, et al. Hybrid system of flocculation-photocatalysis for the decolorization of crystal violet, reactive red X-3B, and acid orange Ⅱ dye[J]. ACS Omega,2020,5(48):31137-31145. doi: 10.1021/acsomega.0c04285
    [12] KANG J, DUAN X G, ZHOU L, et al. Carbocatalytic activation of persulfate for removal of antibiotics in water solutions[J]. Chemical Engineering Journal,2016,288:399-405. doi: 10.1016/j.cej.2015.12.040
    [13] WANG M W, ZHAO Z Q, ZHANG Y B. Sustainable strategy for enhancing anaerobic digestion of waste activated sludge: driving dissimilatory iron reduction with Fenton sludge[J]. ACS Sustainable Chemistry & Engineering,2018,6(2):2220-2230.
    [14] COMNINELLIS C, KAPALKA A, MALATO S, et al. Advanced oxidation processes for water treatment: advances and trends for R&D[J]. Journal of Chemical Technology & Biotechnology,2008,83(6):769-776.
    [15] 许若梦, 吴桐, 锁瑞娟, 等.基于不同自由基的高级氧化技术对水中诺氟沙星的去除效果[J]. 环境工程技术学报,2020,10(3):433-439. doi: 10.12153/j.issn.1674-991X.20190177

    XU R M, WU T, SUO R J, et al. Removal performance of norfloxacin from waters by advanced oxidation processes based on different free radicals[J]. Journal of Environmental Engineering Technology,2020,10(3):433-439. doi: 10.12153/j.issn.1674-991X.20190177
    [16] 安继斌, 夏春秋, 陈红宇, 等.UVA/Fe3O4活化过硫酸盐降解阿特拉津[J]. 环境科学研究,2018,31(1):130-135.

    AN J B, XIA C Q, CHEN H Y, et al. Activation of persulfate by irradiated magnetite: implications for abatement of atrazine in aqueous solution[J]. Research of Environmental Sciences,2018,31(1):130-135.
    [17] 王一凡, 李小蝶, 侯美茹, 等.锰基氧化物活化过硫酸盐降解水中有机污染物的研究进展[J]. 环境科学研究,2021,34(8):1899-1908.

    WANG Y F, LI X D, HOU M R, et al. Activation of persulfate with Mn-based oxides for degradation of organic pollutants in water: a review[J]. Research of Environmental Sciences,2021,34(8):1899-1908.
    [18] CHENG F C, JEN J F, TSAI T H. Hydroxyl radical in living systems and its separation methods[J]. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences,2002,781(1/2):481-496.
    [19] VIONE D, FALLETTI G, MAURINO V, et al. Sources and sinks of hydroxyl radicals upon irradiation of natural water samples[J]. Environmental Science & Technology,2006,40(12):3775-3781.
    [20] 吴建林, 袁莉, 毛学锋, 等.用水杨酸为捕获剂测定辉光放电等离子体中产生的羟基自由基[J]. 西北师范大学学报(自然科学版),2007,43(3):53-56.

    WU J L, YUAN L, MAO X F, et al. Determination of hydroxyl radical produced by glow discharge plasma with salicylic acid trapping[J]. Journal of Northwest Normal University (Natural Science),2007,43(3):53-56.
    [21] YANG X, ZHAN M J, KONG L R, et al. Determination of hydroxyl radicals with salicylic acid in aqueous nitrate and nitrite solutions[J]. Journal of Environmental Sciences ,2004,16(4):687-689.
    [22] ZHAO H Q, GAO J H, ZHOU W ,et al. Quantitative detection of hydroxyl radicals in Fenton system by UV-vis spectrophotometry[J]. Analytical Methods,2015,7(13):5447-5453. doi: 10.1039/C5AY00514K
    [23] 王金刚, 王西奎, 国伟林, 等.亚甲蓝光度法测定羟自由基[J]. 理化检验-化学分册,2007,43(6):495-497.

    WANG J G, WANG X K, GUO W L, et al. Photometric determination of hydroxyl free radical by its reaction with methylene blue[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis),2007,43(6):495-497.
    [24] 颜军, 苟小军, 邹全付, 等.分光光度法测定Fenton反应产生的羟基自由基[J]. 成都大学学报(自然科学版),2009,28(2):91-93,103.

    YAN J, GOU X J, ZOU Q F, et al. Determination of hydroxyl radical generating from Fenton reaction by spectrophotometry[J]. Journal of Chengdu University (Natural Science Edition),2009,28(2):91-93,103.
    [25] 张乃东, 郑威, 彭永臻.褪色光度法测定芬顿体系中产生的羟自由基[J]. 分析化学,2003,31(5):552-554. doi: 10.3321/j.issn:0253-3820.2003.05.009

    ZHANG N D, ZHENG W, PENG Y Z. Determination of hydroxyl radical in Fenton system by decoloring spectrophotometry[J]. Chinese Journal of Analytical Chemistry,2003,31(5):552-554. doi: 10.3321/j.issn:0253-3820.2003.05.009
    [26] 付燕, 王爱香, 马东平, 等.Fe(phen)32+光度法测定辉光放电等离子体中产生的羟基自由基[J]. 西北师范大学学报(自然科学版),2007,43(3):49-52.

    FU Y, WANG A X, MA D P, et al. Determination of hydroxyl radical in glow discharge plasma by Fe(phen)32+ spectrophotometry[J]. Journal of Northwest Normal University (Natural Science),2007,43(3):49-52.
    [27] 姜艳丽, 刘惠玲, 姜兆华, 等.TiO2/Ti光电催化体系中羟自由基的测定[J]. 材料科学与工艺,2006,14(2):162-164,170. doi: 10.3969/j.issn.1005-0299.2006.02.015

    JIANG Y L, LIU H L, JIANG Z H, et al. Determination of hydroxyl radicals in the TiO2/Ti photoelectrocatalytic oxidation system[J]. Materials Science and Technology,2006,14(2):162-164,170. doi: 10.3969/j.issn.1005-0299.2006.02.015
    [28] 潘光建, 张曾, 黄干强.过氧化氢漂白过程中羟自由基定量分析的研究[J]. 中国造纸学报,2006,21(3):41-47. doi: 10.3321/j.issn:1000-6842.2006.03.011

    PAN G J, ZHANG Z, HUANG G Q. Quantitative analysis of hydroxyl radicals in high temperature/alkali hydrogen peroxide system[J]. Transactions of China Pulp and Paper,2006,21(3):41-47. doi: 10.3321/j.issn:1000-6842.2006.03.011
    [29] YLDZ G, DEMIRYÜREK A T. Ferrous iron-induced luminol chemiluminescence: a method for hydroxyl radical study[J]. Journal of Pharmacological and Toxicological Methods,1998,39(3):179-184. doi: 10.1016/S1056-8719(98)00025-2
    [30] SUN T, JIA Z S, de XU Z. Different hydroxyl radical scavenging activity of water-soluble β-alanine C60 adducts[J]. Bioorganic & Medicinal Chemistry Letters,2004,14(7):1779-1781.
    [31] MILLER C J, ROSE A L, WAITE T D. Phthalhydrazide chemiluminescence method for determination of hydroxyl radical production: modifications and adaptations for use in natural systems[J]. Analytical Chemistry,2011,83(1):261-268. doi: 10.1021/ac1022748
    [32] 徐向荣, 王文华, 李华斌.化学发光法测定Fenton反应中的羟自由基及其应用[J]. 环境科学,1998,19(2):53-56.

    XU X R, WANG W H, LI H B. Determination of hydroxyl radicals in Fenton reaction by chemiluminescent method and its application[J]. Chinese Journal of Enviromental Science,1998,19(2):53-56.
    [33] 孙涛, 周冬香, 毛芳, 等.流动注射化学发光法对超氧阴离子自由基O2 ·和羟基自由基·OH的检测[J]. 食品工业科技,2006,27(11):182-184,187. doi: 10.3969/j.issn.1002-0306.2006.11.060

    SUN T, ZHOU D X, MAO F, et al. Analysis of superoxide anion radical O2 · and hydroxyl radical ·OH by flow injection chemilluminescence[J]. Science and Technology of Food Industry,2006,27(11):182-184,187. doi: 10.3969/j.issn.1002-0306.2006.11.060
    [34] YUAN J C, SHILLER A M. Determination of subnanomolar levels of hydrogen peroxide in seawater by reagent-injection chemiluminescence detection[J]. Analytical Chemistry,1999,71(10):1975-1980. doi: 10.1021/ac981357c
    [35] FUJIWARA K, KUMATA H, KANDO N, et al. Flow injection analysis to measure the production ability of superoxide with chemiluminescence detection in natural waters[J]. International Journal of Environmental Analytical Chemistry,2006,86(5):337-346. doi: 10.1080/03067310500352312
    [36] 何超. 氧自由基化学发光体系的研究及其应用[D]. 重庆: 西南大学, 2006.
    [37] 焦昕倩. O3/UV方法自由基的产生规律及对苯酚废水的处理[D]. 长春: 吉林大学, 2006.
    [38] 冯楚楚, 潘水红, 史文霞.活性氧测定分析方法的建立以及应用[J]. 辽宁化工,2016,45(8):1106-1108.

    FENG C C, PAN S H, SHI W X. Establishment and application of analytical method for determination of reactive oxygen species[J]. Liaoning Chemical Industry,2016,45(8):1106-1108.
    [39] TAI C, XIAO C Y, ZHAO T Q, et al. Determination of hydroxyl radicals photochemically generated in surface waters under sunlight by high performance liquid chromatography with fluorescence detection[J]. Analytical Methods,2014,6(20):8193-8199. doi: 10.1039/C4AY01300J
    [40] 胡筱敏, 孙兆楠, 董嫦娥, 等.周期换向电解过程中羟基自由基的产生及测定[J]. 东北大学学报(自然科学版),2012,33(12):1774-1777. doi: 10.12068/j.issn.1005-3026.2012.12.026

    HU X M, SUN Z N, DONG C E, et al. Generation and determination of hydroxyl radicals from electrolytic process with periodically reversing[J]. Journal of Northeastern University (Natural Science),2012,33(12):1774-1777. doi: 10.12068/j.issn.1005-3026.2012.12.026
    [41] 董楠娅.五元杂环类添加剂对铝酸钠溶液种分过程的影响[D].长沙:中南大学,2008.
    [42] KILINC E. Determination of the hydroxyl radical by its adduct formation with phenol and liquid chromatography/electrochemical detection[J]. Talanta,2005,65(4):876-881. doi: 10.1016/j.talanta.2004.08.019
    [43] BRAUN A M, FRIMMEL F H, HOIGNÉ J. Singlet oxygen analysis in irradiated surface waters[J]. International Journal of Environmental Analytical Chemistry,1986,27(1/2):137-149.
    [44] HAAG W R, HOIGNE´ J, GASSMAN E, et al. Singlet oxygen in surface waters: Part I. furfuryl alcohol as a trapping agent[J]. Chemosphere,1984,13(5/6):631-640.
    [45] VAUGHAN P P, BLOUGH N V. Photochemical formation of hydroxyl radical by constituents of natural waters[J]. Environmental Science & Technology,1998,32(19):2947-2953.
    [46] BARRERA A, TZOMPANTZI F, PADILLA J M, et al. Reusable PdO/Al2O3-Nd2O3 photocatalysts in the UV photodegradation of phenol[J]. Applied Catalysis B:Environmental,2014,144:362-368. doi: 10.1016/j.apcatb.2013.07.024
    [47] SANDER W W. P-Benzoquinone O-oxide[J]. The Journal of Organic Chemistry,1988,53(9):2091-2093. doi: 10.1021/jo00244a045
    [48] MATYASOVSZKY N, TIAN M, CHEN A C. Kinetic study of the electrochemical oxidation of salicylic acid and salicylaldehyde using UV/vis spectroscopy and multivariate calibration[J]. The Journal of Physical Chemistry A,2009,113(33):9348-9353. doi: 10.1021/jp904602j
    [49] WOLS B A, HOFMAN-CARIS C H M. Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water[J]. Water Research,2012,46(9):2815-2827. doi: 10.1016/j.watres.2012.03.036
    [50] MORALES-ROQUE J, CARRILLO-CÁRDENAS M, JAYANTHI N, et al. Theoretical and experimental interpretations of phenol oxidation by the hydroxyl radical[J]. Journal of Molecular Structure:THEOCHEM,2009,910(1/2/3):74-79.
    [51] SUN L, CHEN H, ABDULLA H A, et al. Estimating hydroxyl radical photochemical formation rates in natural waters during long-term laboratory irradiation experiments[J]. Environmental Science Processes & Impacts,2014,16(4):757-763.
    [52] ÅGREN A, REICHARD P, BONNICHSEN R, et al. The complex formation between iron(Ⅲ) ion and some phenols. II: salicylic acid and p-amino salicylic acid[J]. Acta Chemica Scandinavica,1954,8:1059-1072.
    [53] COOLEN S A J, HUF F A, REIJENGA J C. Determination of free radical reaction products and metabolites of salicylic acid using capillary electrophoresis and micellar electrokinetic chromatography[J]. Journal of Chromatography B:Biomedical Sciences and Applications,1998,717(1/2):119-124.
    [54] WANG Q J, DING F, ZHU N N, et al. Determination of hydroxyl radical by capillary zone electrophoresis with amperometric detection[J]. Journal of Chromatography A,2003,1016(1):123-128. doi: 10.1016/S0021-9673(03)01294-9
    [55] 程宏英, 曹玉华.毛细管电泳-电化学检测法测定硫酸铜-维生素C反应体系中的羟基自由基和菊花的抗氧化活性[J]. 色谱,2007,25(5):681-685. doi: 10.3321/j.issn:1000-8713.2007.05.012

    CHENG H Y, CAO Y H. Determination of hydroxyl radical in CuSO4-vitamin C reaction system and scavenging activities of Chrysanthemum using capillary electrophoresis with electrochemical detection[J]. Chinese Journal of Chromatography,2007,25(5):681-685. doi: 10.3321/j.issn:1000-8713.2007.05.012
    [56] 张卫东. 毛细管电泳—电化学检测在环境和药物分析中的应用研究[D]. 上海: 华东师范大学, 2007.
    [57] 赵淑锐, 杨源, 郑美青, 等.基于Fenton反应产生的羟自由基检测方法比较[J]. 实验技术与管理,2020,37(12):67-71.

    ZHAO S R, YANG Y, ZHENG M Q, et al. Comparison of detection methods of hydroxyl radicals based on Fenton reaction[J]. Experimental Technology and Management,2020,37(12):67-71.
    [58] FENG Y, WU D L, ZHOU Y, et al. A metal-free method of generating sulfate radicals through direct interaction of hydroxylamine and peroxymonosulfate: mechanisms, kinetics, and implications[J]. Chemical Engineering Journal,2017,330:906-913. doi: 10.1016/j.cej.2017.08.034
    [59] CASHMAN M A, KIRSCHENBAUM L, HOLOWACHUK J, et al. Identification of hydroxyl and sulfate free radicals involved in the reaction of 1, 4-dioxane with peroxone activated persulfate oxidant[J]. Journal of Hazardous Materials,2019,380:120875. doi: 10.1016/j.jhazmat.2019.120875
    [60] 孙霞. 铜、铁对水体中阿特拉津光降解影响的研究[D]. 大连: 大连理工大学, 2010.
    [61] ZHOU Y, WANG X L, ZHU C Y, et al. New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: role of sulfur conversion in sulfate radical generation[J]. Water Research,2018,142:208-216. doi: 10.1016/j.watres.2018.06.002
    [62] SUEISHI Y, MIYAZONO K, KOZAI K. Effects of substituent and external pressure on spin trapping rates of carbon dioxide anion, sulfur trioxide anion, hydroxyl, and ethyl radicals with various PBN- and DMPO-type spin traps[J]. Zeitschrift Für Physikalische Chemie,2014,228(9):927-938.
    [63] JANZEN E G, WANG Y Y, SHETTY R V. ChemInform abstract: spin trapping with α-pyridyl 1-OXIDE n-tert-butyl nitrones in aqueous solutions. a unique electron spin resonance spectrum for the hydroxyl radical adduct[J]. Chemischer Informationsdienst,1978,9(33):2923-2935.
    [64] HIDEG É, SPETEA C, VASS I. Singlet oxygen and free radical production during acceptor- and donor-side-induced photoinhibition: studies with spin trapping EPR spectroscopy[J]. Biochimica et Biophysica Acta (BBA) : Bioenergetics,1994,1186(3):143-152. doi: 10.1016/0005-2728(94)90173-2
    [65] ZAMORA P L, VILLAMENA F A. Theoretical and experimental studies of the spin trapping of inorganic radicals by 5, 5-dimethyl-1-pyrroline N-oxide (DMPO): 3. sulfur dioxide, sulfite, and sulfate radical anions[J]. Journal of Physical Chemistry A,2012,116(26):7210-7218. doi: 10.1021/jp3039169
    [66] VILLAMENA F A, LOCIGNO E J, ROCKENBAUER A, et al. Theoretical and experimental studies of the spin trapping of inorganic radicals by 5, 5-dimethyl-1-pyrroline N-oxide (DMPO): 2. carbonate radical anion[J]. Journal of Physical Chemistry A,2007,111(2):384-391. doi: 10.1021/jp065692d
    [67] BONINI M G, RADI R, FERRER-SUETA G, et al. Direct EPR detection of the carbonate radical anion produced from peroxynitrite and carbon dioxide[J]. Journal of Biological Chemistry,1999,274(16):10802-10806. doi: 10.1074/jbc.274.16.10802
    [68] CARNEY J M, FLOYD R A. PBN, DMPO, and POBN compositions and method of use thereof for inhibition of age-associated oxidation: US5405874[P]. 1995-04-11.
    [69] POU S, RAMOS C L, GLADWELL T, et al. A kinetic approach to the selection of a sensitive spin trapping system for the detection of hydroxyl radical[J]. Analytical Biochemistry,1994,217(1):76-83. doi: 10.1006/abio.1994.1085
    [70] BURNS J M, COOPER W J, FERRY J L, et al. Methods for reactive oxygen species (ROS) detection in aqueous environments[J]. Aquatic Sciences,2012,74(4):683-734. doi: 10.1007/s00027-012-0251-x
    [71] STOLZE K, UDILOVA N, ROSENAU T, et al. Spin adduct formation from lipophilic EMPO-derived spin traps with various oxygen- and carbon-centered radicals[J]. Biochemical Pharmacology,2005,69(2):297-305. doi: 10.1016/j.bcp.2004.09.021
    [72] HIDEG É, SPETEA C, VASS I. Singlet oxygen production in thylakoid membranes during photoinhibition as detected by EPR spectroscopy[J]. Photosynthesis Research,1994,39(2):191-199. doi: 10.1007/BF00029386
    [73] KLAUSCHENZ E, HASELOFF R F, VOLODARSKII L B, et al. Spin trapping using 2, 2-dimethyl-2H-imidazole-1-oxides[J]. Free Radical Research,1994,20(2):103-111. doi: 10.3109/10715769409147507
    [74] ROUBAUD V, LAURICELLA R, TUCCIO B, et al. Decay of superoxide spin adducts of new PBN-type phosphorylated nitrones[J]. Research on Chemical Intermediates,1996,22(4):405-416. doi: 10.1163/156856796X00098
    [75] TUCCIO B, ZEGHDAOUI A, FINET J P, et al. Use of new β-phosphorylated nitrones for the spin trapping of free radicals[J]. Research on Chemical Intermediates,1996,22(4):393-404. doi: 10.1163/156856796X00089
    [76] PODMORE I, CUNLIFFE L, HESHMATI M. Rapid detection of free radicals using spin trapping and MALDI-TOF mass spectrometry[J]. Journal of Chemical Research,2013,37(1):45-47. doi: 10.3184/174751912X13548917858338
    [77] BARTALIS J, ZHAO Y L, FLORA J W, et al. Carbon-centered radicals in cigarette smoke: acyl and alkylaminocarbonyl radicals[J]. Analytical Chemistry,2009,81(2):631-641. doi: 10.1021/ac801969f
    [78] REIS A, DOMINGUES M R M, OLIVEIRA M M, et al. Identification of free radicals by spin trapping with DEPMPO and MCPIO using tandem mass spectrometry[J]. European Journal of Mass Spectrometry (Chichester, England),2009,15(6):689-703. doi: 10.1255/ejms.1026
    [79] GUO Q, QIAN S Y, MASON R P. Separation and identification of DMPO adducts of oxygen-centered radicals formed from organic hydroperoxides by HPLC-ESR, ESI-MS and MS/MS[J]. Journal of the American Society for Mass Spectrometry,2003,14(8):862-871. doi: 10.1016/S1044-0305(03)00336-2
    [80] SIMÕES C, DOMINGUES P, DOMINGUES M R M. Identification of free radicals in oxidized and glycoxidized phosphatidylethanolamines by spin trapping combined with tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry,2012,26(8):931-939. doi: 10.1002/rcm.6186
    [81] LU P N, KU D L, HUANG X W, et al. A sensitive method for the determination of ultra trace levels of reactive bromine species in water using LC-MS/MS[J]. Talanta,2019,199:567-572. doi: 10.1016/j.talanta.2019.03.020
    [82] DOMINGUES M R M, DOMINGUES P, REIS A, et al. Identification of oxidation products and free radicals of tryptophan by mass spectrometry[J]. Journal of the American Society for Mass Spectrometry,2003,14(4):406-416. doi: 10.1016/S1044-0305(03)00127-2
    [83] JURVA U, WIKSTRÖM H V, BRUINS A P. Electrochemically assisted Fenton reaction: reaction of hydroxyl radicals with xenobiotics followed by on-line analysis with high-performance liquid chromatography/tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry,2002,16(20):1934-1940. doi: 10.1002/rcm.808
    [84] WANG Y, LIU M S, ZHU Y J, et al. Identifying the tobacco related free radicals by UPCC-QTOF-MS with radical trapping method in mainstream cigarette smoke[J]. Talanta,2016,160:106-112. doi: 10.1016/j.talanta.2016.07.002
    [85] DOMINGUES P, DOMINGUES M R M, AMADO F M L, et al. Detection and characterization of hydroxyl radical adducts by mass spectrometry[J]. Journal of the American Society for Mass Spectrometry,2001,12(11):1214-1219. doi: 10.1016/S1044-0305(01)00310-5
    [86] IMARAM W, GERSCH C, KIM K M, et al. Radicals in the reaction between peroxynitrite and uric acid identified by electron spin resonance spectroscopy and liquid chromatography mass spectrometry[J]. Free Radical Biology and Medicine,2010,49(2):275-281. doi: 10.1016/j.freeradbiomed.2010.04.010
    [87] QI F, CHU W, XU B B. Catalytic degradation of caffeine in aqueous solutions by cobalt-MCM41 activation of peroxymonosulfate[J]. Applied Catalysis B:Environmental,2013,134/135:324-332. doi: 10.1016/j.apcatb.2013.01.038
    [88] YAO Y J, CHEN H, LIAN C, et al. Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal[J]. Journal of Hazardous Materials,2016,314:129-139. doi: 10.1016/j.jhazmat.2016.03.089
    [89] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution[J]. Journal of Physical and Chemical Reference Data,1988,17(2):513-886. doi: 10.1063/1.555805
    [90] ZHOU Y, JIANG J, GAO Y, et al. Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process[J]. Environmental Science & Technology,2015,49(21):12941-12950.
    [91] LIU Y, GUO H G, ZHANG Y L, et al. Fe@C carbonized resin for peroxymonosulfate activation and bisphenol S degradation[J]. Environmental Pollution,2019,252:1042-1050. doi: 10.1016/j.envpol.2019.05.157
    [92] WANG J L, WANG S Z. Reactive species in advanced oxidation processes: formation, identification and reaction mechanism[J]. Chemical Engineering Journal,2020,401:126158. doi: 10.1016/j.cej.2020.126158
    [93] MANZOOR K, MISHRA S K, PODMORE I D. Detection and identification of ethanal-derived spin-trapped free radicals using headspace thermal desorption gas chromatography-mass spectrometry (TD-GC-MS)[J]. Free Radical Research,2020,54(10):745-755. doi: 10.1080/10715762.2020.1841183
    [94] MISTRY P, NAJIM N, PURDIE A, et al. Indirect detection of hydroxyl radicals using spin trapping and gas chromatography-mass spectrometry[J]. Journal of Chemical Research Synopses,2008(7):395-397. □
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  647
  • HTML全文浏览量:  178
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14

目录

    /

    返回文章
    返回