留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaO调质污泥自然失水特性及数学模型研究

周俏俏 葛仕福 丁晶 周彩玲

周俏俏,葛仕福,丁晶,等.CaO调质污泥自然失水特性及数学模型研究[J].环境工程技术学报,2022,12(3):802-808 doi: 10.12153/j.issn.1674-991X.20210282
引用本文: 周俏俏,葛仕福,丁晶,等.CaO调质污泥自然失水特性及数学模型研究[J].环境工程技术学报,2022,12(3):802-808 doi: 10.12153/j.issn.1674-991X.20210282
ZHOU Q Q,GE S F,DING J,et al.Study on natural water loss characteristics and mathematical model of CaO conditioned sludge[J].Journal of Environmental Engineering Technology,2022,12(3):802-808 doi: 10.12153/j.issn.1674-991X.20210282
Citation: ZHOU Q Q,GE S F,DING J,et al.Study on natural water loss characteristics and mathematical model of CaO conditioned sludge[J].Journal of Environmental Engineering Technology,2022,12(3):802-808 doi: 10.12153/j.issn.1674-991X.20210282

CaO调质污泥自然失水特性及数学模型研究

doi: 10.12153/j.issn.1674-991X.20210282
基金项目: 国家重点研发计划项目(2020YFC1908700)
详细信息
    作者简介:

    周俏俏(1996—),女,硕士研究生,主要从事土壤重金属治理研究,1425280014@qq.com

    通讯作者:

    葛仕福(1962—),男,教授,主要从事干燥设备及技术研究,ge1962@126.com

  • 中图分类号: X705

Study on natural water loss characteristics and mathematical model of CaO conditioned sludge

  • 摘要:

    以城市污泥为对象,研究CaO添加比、空气流速及污泥堆积厚度对CaO调质污泥自然失水特性的影响。结果表明:污泥失水速率与空气流速、CaO添加比成正比,与堆积厚度成反比。基于Page模型建立的通用模型拟合值与实测值吻合较好,均方根误差为6.34%,能较好地模拟CaO调质污泥自然失水过程。根据Page模型计算出的污泥有效水分扩散系数为9.96×10−9~1.65×10−7,自然失水时间与CaO添加比、空气流速呈正相关,与污泥堆积厚度呈负相关。以单位失水量总费用为评价指标,采用MATLAB软件中Fmincon函数计算出单位失水量总费用最低时的最优干燥参数组合:CaO添加比为0.02,空气流速为0.6 m/s,污泥堆积厚度为7 mm。

     

  • 图  1  CaO添加比对污泥温度的影响

    Figure  1.  Effect of CaO addition ratio on sludge temperature

    图  2  CaO添加比对污泥pH的影响

    Figure  2.  Effect of CaO addition ratio on the pH of sludge

    图  3  CaO添加比对污泥失水特性的影响

    Figure  3.  Water loss characteristic curve of sludge under different CaO addition ratios

    图  4  空气流速对污泥失水特性的影响

    Figure  4.  Water loss characteristic curve of sludge under different airflow rates

    图  5  堆积厚度对污泥失水特性的影响

    Figure  5.  Water loss characteristic curve of sludge under different accumulation thickness

    图  6  水分比实测值和模型预测值的比较

    Figure  6.  Comparison of experimental and model predicted values of MR

    图  7  不同干燥条件下污泥的有效水分扩散系数

    Figure  7.  Effective water diffusion coefficient of sludge under different drying conditions

    图  8  不同干燥条件对自然失水时间的影响

    Figure  8.  Effect of different drying conditions on the natural water loss time

    图  9  单位失水量总费用与CaO添加比、空气流速、堆积厚度的关系

    Figure  9.  Relationship between the total cost per unit water loss and CaO addition ratio, airflow rate, bulking thickness

    表  1  常用薄层干燥模型及拟合结果

    Table  1.   Common thin-layer drying models and fitting results

    模型编号模型名称模型方程R2均值χ2均值
    1Newton[23]MR=exp(−kt)0.968 72.6×10−3
    2Page[24]MR=exp(−ktn)0.994 75.7×10−4
    3Henderson等[25]MR=aexp(−kt)0.962 72.7×10−3
    4Tow-term[26]MR=a1exp(−k1t)+a2exp(−k2t)0.983 97.0×10−4
    5Logarithmic[27]MR=aexp(−kt)+c0.979 31.2×10−3
    注:ac为干燥常数;kn为模型参数。
    下载: 导出CSV

    表  2  Page模型统计分析结果

    Table  2.   Statistical analysis results of Page model

    模型方程CaO添加比空气流速/(m/s)堆积厚度/mmR2χ2模型参数
    k n
    MR=exp(−ktn) 0.1 1.8 2 0.989 7 8.9×10−4 0.041 4 0.763
    0.2 1.8 2 0.992 3 9.8×10−4 0.048 7 0.784
    0.3 1.8 2 0.995 8 3.7×10−4 0.057 6 0.803
    0.4 1.8 2 0.997 5 1.9×10−4 0.073 9 0.834
    0.2 0.6 5 0.996 6 3.4×10−4 0.017 8 0.755
    0.2 1.2 5 0.999 9 2.8×10−6 0.018 6 0.766
    0.2 1.8 5 0.996 7 3.9×10−4 0.023 3 0.777
    0.2 1.8 8 0.998 8 1.5×10−4 0.014 6 0.765
    下载: 导出CSV
  • [1] 栗志翔.市政污泥的处置及资源化利用综述[J]. 科技风,2021(7):121-122.
    [2] 魏亮, 金星, 马丽萍.污水厂剩余污泥处理处置技术研究进展[J]. 农业与技术,2021,41(8):8106-8108.
    [3] 石万里, 张大鹏, 赵泽华, 等.化学法调理生化污泥脱水效果研究[J]. 环境工程技术学报,2020,10(2):273-279. doi: 10.12153/j.issn.1674-991X.20190114

    SHI W L, ZHANG D P, ZHAO Z H, et al. Study on the effect of chemical conditioning method on the dewatering effect of biochemical sludge[J]. Journal of Environmental Engineering Technology,2020,10(2):273-279. doi: 10.12153/j.issn.1674-991X.20190114
    [4] 纪秀俊. CaO调质城市污泥热干化过程及其建模研究[D]. 兰州: 兰州理工大学, 2018.
    [5] 汪曌, 马晓茜, 彭晓为, 等.CaO改善印染污泥干化效果的微观研究[J]. 可再生能源,2016,34(3):462-468.

    WANG Z, MA X Q, PENG X W, et al. Microscopic study on CaO improving dryness of dyeing sludge based on directional random walk method[J]. Renewable Energy Resources,2016,34(3):462-468.
    [6] DENG W Y, SU Y X. Experimental study on agitated drying characteristics of sewage sludge under the effects of different additive agents[J]. Journal of Environmental Sciences,2014,26(7):1523-1529. doi: 10.1016/j.jes.2014.05.019
    [7] LIU H, LIU P, HU H Y, et al. Combined effects of Fenton peroxidation and CaO conditioning on sewage sludge thermal drying[J]. Chemosphere,2014,117:559-566. doi: 10.1016/j.chemosphere.2014.09.038
    [8] 丁晶, 葛仕福, 杨叙军, 等.石灰调质污泥恒温干燥特性及动力学模型研究[J]. 化工装备技术,2013,34(6):18-22. doi: 10.3969/j.issn.1007-7251.2013.06.005

    DING J, GE S F, YANG X J, et al. Study on isothermal drying characteristics and kinetics model of lime sludge[J]. Chemical Equipment Technology,2013,34(6):18-22. doi: 10.3969/j.issn.1007-7251.2013.06.005
    [9] 章华熔, 芦佳, 叶兴联, 等.污泥热干化技术应用综述[J]. 中国环保产业,2020(1):56-59.

    ZHANG H R, LU J, YE X L, et al. Application and characteristic analysis on sludge thermal dewatering technology[J]. China Environmental Protection Industry,2020(1):56-59.
    [10] HARYANTO B, SINUHAJI T F, TARIGAN E A, et al. Simulation of natural drying kinetics of carrot (Daucus carota L.) on thickness variation[J]. IOP Conference Series:Earth and Environmental Science,2021,782(3):032086. doi: 10.1088/1755-1315/782/3/032086
    [11] FORTIER J, TRUAX B, GAGNON D, et al. Natural drying and chemical characteristics of hybrid poplar firewood produced from agricultural bioenergy buffers in southern Québec, Canada[J]. Forests,2021,12(2):122. doi: 10.3390/f12020122
    [12] 周登健, 林超.污泥自然干化过程中的影响因素[J]. 科技创新导报,2011,8(34):79,81.
    [13] 曾庆洋, 伍健东, 周兴求, 等.污泥厚度和风速对污泥常温干燥的影响及干燥模型分析[J]. 科学技术与工程,2017,17(12):55-61. doi: 10.3969/j.issn.1671-1815.2017.12.010

    ZENG Q Y, WU J D, ZHOU X Q, et al. Effects of sludge thickness and air velocity on sludge drying at room temperature and drying models analysis[J]. Science Technology and Engineering,2017,17(12):55-61. doi: 10.3969/j.issn.1671-1815.2017.12.010
    [14] 曾庆洋, 伍健东, 周兴求, 等.石灰投加比对污泥低温干燥特性及冷凝液性质的影响[J]. 环境工程学报,2017,11(10):5603-5608. doi: 10.12030/j.cjee.201611158

    ZENG Q Y, WU J D, ZHOU X Q, et al. Effects of lime addition ratio on sludge lime drying at low temperature and the properties of condensate[J]. Chinese Journal of Environmental Engineering,2017,11(10):5603-5608. doi: 10.12030/j.cjee.201611158
    [15] 曹秀芹, 杨华, 甘一萍, 等.污泥石灰干化作用机理及应用研究[J]. 水工业市场,2011(8):44-48.
    [16] 冯凯, 黄鸥.石灰调质与石灰干化工艺在污泥脱水中的应用[J]. 给水排水,2011,47(5):7-10. doi: 10.3969/j.issn.1002-8471.2011.05.002
    [17] 闫景武, 杨朝晖, 黄兢, 等.添加CaO脱水污泥的微波干燥特性[J]. 环境工程学报,2016,10(9):5128-5132. doi: 10.12030/j.cjee.201504069

    YAN J W, YANG Z H, HUANG J, et al. Microwave drying characteristics and kinetic model of thin-layer dehydrated sludge with CaO addition[J]. Chinese Journal of Environmental Engineering,2016,10(9):5128-5132. doi: 10.12030/j.cjee.201504069
    [18] 梁晓辉, 司洪宇, 赵玉晓, 等.市政剩余污泥CaO处理及生物干化过程的细菌群落变化[J]. 山东科学,2020,33(6):72-78. doi: 10.3976/j.issn.1002-4026.2020.06.010
    [19] 吴生礼, 陶乐仁, 谷志攀, 等.污泥薄层干燥特性及动力学模型分析[J]. 净水技术,2017,36(12):33-37.

    WU S L, TAO L R, GU Z P, et al. Characteristics of thin-layer drying and analysis of kinetic model for sewage sludge[J]. Water Purification Technology,2017,36(12):33-37.
    [20] 冯金钻, 陶乐仁, 黄理浩, 等.市政污泥干燥特性的实验研究和模拟分析[J]. 能源研究与信息,2021,37(1):10-16.

    FENG J Z, TAO L R, HUANG L H, et al. Experimental study and simulation analysis on drying characteristics of municipal sludge[J]. Energy Research and Information,2021,37(1):10-16.
    [21] 孔令波, 杨兴, 董继先, 等.造纸污泥薄层干燥模型的研究进展[J]. 中国造纸,2019,38(11):70-75. doi: 10.11980/j.issn.0254-508X.2019.11.011

    KONG L B, YANG X, DONG J X, et al. Research progress of thin-layer drying model for paper sludge[J]. China Pulp & Paper,2019,38(11):70-75. doi: 10.11980/j.issn.0254-508X.2019.11.011
    [22] 张绪坤, 刘胜平, 吴青荣, 等.污泥低温干燥动力学特性及干燥参数优化[J]. 农业工程学报,2017,33(17):216-223. doi: 10.11975/j.issn.1002-6819.2017.17.029

    ZHANG X K, LIU S P, WU Q R, et al. Drying kinetics and parameters optimization of sludge drying at low temperature[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(17):216-223. doi: 10.11975/j.issn.1002-6819.2017.17.029
    [23] ERBAY Z, ICIER F. A review of thin layer drying of foods: theory modeling, and experimental results[J]. Critical Reviews in Food Science and Nutrition,2010,50(5):441-464. doi: 10.1080/10408390802437063
    [24] PAGE G E. Factors influencing the maximum rates of air drying shelled corn in thin layers[D]. West Lafayette: Purdue University, 1949.
    [25] HENDORSON S M, PABIS S. Grain drying theory: I. temperature effect on drying coefficient[J]. Journal of Agricultural Engineering Research,1961,6(3):169.
    [26] JUN H L, HUI J K. Vacuum drying kinetics of Asian white radish (Raphanus sativus L.) slices[J]. Food Science and Technology,2008,42(1):180-186.
    [27] ERTEKIN C, YALDIZ O. Drying of eggplant and selection of a suitable thin layer drying model[J]. Food Engineer,2004,63:349-359. ⊗ doi: 10.1016/j.jfoodeng.2003.08.007
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  104
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-30
  • 网络出版日期:  2022-06-07

目录

    /

    返回文章
    返回