留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粉葛对农田土壤镉的富集特征

林小兵 武琳 周利军 黄欠如 刘少华 陈锋 欧阳国平 张秋梅

林小兵,武琳,周利军,等.粉葛对农田土壤镉的富集特征[J].环境工程技术学报,2022,12(5):1626-1632 doi: 10.12153/j.issn.1674-991X.20210271
引用本文: 林小兵,武琳,周利军,等.粉葛对农田土壤镉的富集特征[J].环境工程技术学报,2022,12(5):1626-1632 doi: 10.12153/j.issn.1674-991X.20210271
LIN X B,WU L,ZHOU L J,et al.Accumulation characteristics of cadmium in farmland soil by Pueraria thomsonii[J].Journal of Environmental Engineering Technology,2022,12(5):1626-1632 doi: 10.12153/j.issn.1674-991X.20210271
Citation: LIN X B,WU L,ZHOU L J,et al.Accumulation characteristics of cadmium in farmland soil by Pueraria thomsonii[J].Journal of Environmental Engineering Technology,2022,12(5):1626-1632 doi: 10.12153/j.issn.1674-991X.20210271

粉葛对农田土壤镉的富集特征

doi: 10.12153/j.issn.1674-991X.20210271
基金项目: 江西省重大科技研发专项(20194ABC28010)
详细信息
    作者简介:

    林小兵(1992—),男,助理研究员,硕士,主要从事土壤资源与环境生态研究,linxiaobing14@mails.ucas.ac.cn

    通讯作者:

    张秋梅(1978—),女,农艺师,主要从事农作物栽培研究,570708177@qq.com

  • 中图分类号: X53

Accumulation characteristics of cadmium in farmland soil by Pueraria thomsonii

  • 摘要:

    选用生长速度快、生物量大、经济价值高的富集植物是重金属生物修复新的突破口。为研究粉葛对农田土壤镉(Cd)的富集特征,采用大田试验探讨3种污染程度下粉葛不同部位葛根(葛粉和葛渣)、葛头、主藤、侧枝和叶片中Cd浓度。结果表明:粉葛不同部位中Cd浓度表现为侧枝(8.96 mg/kg)>主藤(6.85 mg/kg)>叶片(5.22 mg/kg)>葛头(2.80 mg/kg)>葛渣(1.36 mg/kg)>葛根(1.21 mg/kg)>葛粉(0.16 mg/kg),且随土壤污染程度增加而增加,表现为中、高污染显著高于低污染(P<0.05)。除葛根外,粉葛其他部位对土壤Cd的富集系数均大于1(1.09~8.65),转运系数为2.59~8.98。粉葛各部位中Cd的分配率表现为侧枝(35.64%~43.81%)>主藤(21.55%~25.49%)>叶片(15.40%~23.63%)>葛根(7.03%~9.94%)>葛头(5.99%~9.57%)。粉葛各部位生物量表现为葛根>侧枝>叶片>主藤>葛头,粉葛对Cd移除量随土壤污染程度递增,具体为高污染(45.39 g/hm2)>中污染(39.96 g/hm2)>低污染(16.56 g/hm2)。总体上,粉葛各部位中Cd浓度与土壤有机质、有效态Cd、总Cd浓度呈显著正相关,而与土壤pH均呈负相关。在Cd污染农田土壤治理中,粉葛(用作葛粉)对Cd污染农田土壤修复具有应用价值。

     

  • 图  1  土壤污染程度对粉葛不同部位中Cd浓度的影响

    注:不同小写字母表示在0.05水平差异显著。

    Figure  1.  Influence of soil pollution level on the content of Cd in different parts of Pueraria thomsonii

    图  2  粉葛不同部位Cd浓度比较

    注:同图1

    Figure  2.  Comparison of Cd contents in different parts of Pueraria thomsonii

    图  3  土壤理化性质及Cd浓度与粉葛不同部位中Cd浓度的相关性分析

    Figure  3.  Correlation analysis of physiochemical properties, Cd contents in soil and Cd contents in different parts of Pueraria thomsonii

    表  1  土壤理化性质及Cd污染程度

    Table  1.   Physiochemical properties and Cd pollution level in soil

    土壤污染程度总Cd浓度/
    (mg/kg)
    有效Cd浓度/
    (mg/kg)
    有机质浓度/
    (g/kg)
    pH
    0.530.3926.694.64
    1.281.1334.354.60
    1.931.3834.364.64
    下载: 导出CSV

    表  2  不同土壤污染程度下粉葛各部分富集系数

    Table  2.   Accumulation coefficients of various parts of Pueraria thomsonii under different soil pollution levels

    土壤污染程度葛根/土壤葛头/土壤主藤/土壤侧枝/土壤叶片/土壤
    1.12±0.423.15±1.225.47±1.205.43±0.904.63±1.97
    1.09±0.352.56±0.705.68±1.188.65±4.105.03±1.63
    0.98±0.452.15±0.766.20±1.237.86±2.404.25±0.57
    下载: 导出CSV

    表  3  不同土壤污染程度下粉葛各部位转运系数

    Table  3.   Transport coefficients of various parts of Pueraria thomsonii under different soil pollution levels

    土壤污染程度葛头/葛根主藤/葛根侧枝/葛根叶片/葛根
    3.14±1.965.65±3.005.59±2.494.87±3.46
    2.59±0.546.01±2.028.98±4.755.04±1.14
    2.63±1.717.21±2.818.65±2.085.31±3.32
    下载: 导出CSV

    表  4  不同土壤污染程度下粉葛各部分中Cd的分配率

    Table  4.   Distribution rates of Cd in different parts of Pueraria thomsonii under different soil pollution levels % 

    土壤污染
    程度
    葛根葛头主藤侧枝叶片
    9.94±7.649.57±4.2625.24±5.5639.84±10.1315.40±6.17
    7.03±0.315.99±1.3221.55±4.6743.81±12.0121.61±13.58
    7.99±3.167.25±2.7325.49±6.2235.64±13.9123.63±12.35
    下载: 导出CSV

    表  5  不同土壤污染程度下粉葛各部位生物量

    Table  5.   Biomass in different parts of Pueraria thomsonii under different soil pollution levels g/株 

    土壤污染程度葛根葛头主藤侧枝叶片地上部分
    119.38±18.3152.01±20.7385.50±43.74134.75±70.4673.12±67.71345.26±181.13
    114.74±13.3444.75±24.8668.33±27.0694.60±34.0782.33±59.37290.02±123.22
    102.62±24.6244.69±21.8951.11±7.5561.01±33.4164.32±33.05220.69±26.89
    下载: 导出CSV

    表  6  不同土壤污染程度下粉葛Cd移除量

    Table  6.   Cd removal amount from Pueraria thomsonii under different soil pollution levels

    土壤污染程度净化率/%单株移除量/(mg/株)移除量/(g/hm2
    25.27±13.120.92±0.5516.56±9.90
    19.65±2.362.22±0.3739.96±6.66
    14.99±5.392.52±0.8545.36±15.30
    注:净化率=植株Cd积累量/土壤有效态Cd浓度×100%[19]
    下载: 导出CSV
  • [1] 郭广慧, 雷梅, 乔鹏炜.北京市城市发展中土壤重金属的空间分布[J]. 环境工程技术学报,2015,5(5):424-428. doi: 10.3969/j.issn.1674-991X.2015.05.067

    GUO G H, LEI M, QIAO P W. Spatial distribution of heavy metals in soils during urban development of Beijing[J]. Journal of Environmental Engineering Technology,2015,5(5):424-428. doi: 10.3969/j.issn.1674-991X.2015.05.067
    [2] 环境保护部. 全国土壤污染状况调查公报[A/OL]. [2021-04-05]. http://www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm.
    [3] 张建, 杨瑞东, 陈蓉, 等.贵州喀斯特地区土壤-辣椒体系重金属元素的生物迁移积累特征[J]. 食品科学,2017,38(21):175-181. doi: 10.7506/spkx1002-6630-201721028

    ZHANG J, YANG R D, CHEN R, et al. Bioconcentration of heavy metals in soil-Capsicum annuum L. system in Karst areas of Guizhou Province[J]. Food Science,2017,38(21):175-181. doi: 10.7506/spkx1002-6630-201721028
    [4] YANG Y, ZHOU X H, TIE B Q, et al. Comparison of three types of oil crop rotation systems for effective use and remediation of heavy metal contaminated agricultural soil[J]. Chemosphere,2017,188:148-156. doi: 10.1016/j.chemosphere.2017.08.140
    [5] SHI L, GUO Z H, LIANG F, et al. Effect of liming with various water regimes on both immobilization of cadmium and improvement of bacterial communities in contaminated paddy: a field experiment[J]. International Journal of Environmental Research and Public Health,2019,16(3):498. doi: 10.3390/ijerph16030498
    [6] 谭可夫, 涂鹏飞, 杨洋, 等.烟草—红叶甜菜轮作对镉污染农田的修复潜力试验[J]. 环境工程技术学报,2020,10(3):440-448. doi: 10.12153/j.issn.1674-9991X.20190167

    TAN K F, TU P F, YANG Y, et al. Phytoextraction of cadmium contaminated agricultural soil by tobacco and swiss chard rotation systems[J]. Journal of Environmental Engineering Technology,2020,10(3):440-448. doi: 10.12153/j.issn.1674-9991X.20190167
    [7] 徐剑锋, 王雷, 熊瑛, 等.土壤重金属污染强化植物修复技术研究进展[J]. 环境工程技术学报,2017,7(3):366-373. doi: 10.3969/j.issn.1674-991X.2017.03.051

    XU J F, WANG L, XIONG Y, et al. Research progress on strengthening phytoremediation technologies for heavy metals contaminated soil[J]. Journal of Environmental Engineering Technology,2017,7(3):366-373. doi: 10.3969/j.issn.1674-991X.2017.03.051
    [8] KRÄMER U. Metal hyperaccumulation in plants[J]. Annual Review of Plant Biology,2010,61:517-534. doi: 10.1146/annurev-arplant-042809-112156
    [9] 王艳, 杨远宁, 王学礼, 等.施用含硒有机肥对粉葛产量及硒吸收转运的影响[J]. 热带作物学报,2021,42(2):449-454. doi: 10.3969/j.issn.1000-2561.2021.02.021

    WANG Y, YANG Y N, WANG X L, et al. Effects of selenium-containing organic fertilizer on the yield and selenium absorption and transport of Pueraria thomsonii Benth[J]. Chinese Journal of Tropical Crops,2021,42(2):449-454. doi: 10.3969/j.issn.1000-2561.2021.02.021
    [10] 田国政.葛中重金属元素铅和镉的分析与评价[J]. 湖北民族学院学报(自然科学版),2004,22(4):42-44.

    TIAN G Z. The analysis and evaluation of lead and cadmium of kudzu vine[J]. Journal of Hubei Institute for Nationalities,2004,22(4):42-44.
    [11] 何绍浪, 黄欠如, 成艳红, 等.江西省葛产业发展现状及对策[J]. 湖北农业科学,2019,58(22):130-133. doi: 10.14088/j.cnki.issn0439-8114.2019.22.030

    HE S L, HUANG Q R, CHENG Y H, et al. Current situation and strategies on the development of Pueraria industry in Jiangxi Province[J]. Hubei Agricultural Sciences,2019,58(22):130-133. doi: 10.14088/j.cnki.issn0439-8114.2019.22.030
    [12] 章丽娟. 大理葛根及其种植土壤中主要金属元素的调查[D]. 大理: 大理学院, 2012.
    [13] 陆金, 赵兴青, 黄健, 等.铜陵狮子山矿区尾矿库及周边17种乡土植物重金属含量及富集特征[J]. 环境化学,2019,38(1):78-86. doi: 10.7524/j.issn.0254-6108.2018021302

    LU J, ZHAO X Q, HUANG J, et al. Heavy metal contents and enrichment characteristics of 17 species indigenous plants in the tailing surrounding in Shizishan, Tongling[J]. Environmental Chemistry,2019,38(1):78-86. doi: 10.7524/j.issn.0254-6108.2018021302
    [14] 叶惠煊, 谭舟, 刘向前, 等.湿法消解-原子荧光光谱法测定湘葛一号中的砷、汞、铅[J]. 食品科学,2014,35(4):151-154. doi: 10.7506/spkx1002-6630-201404031

    YE H X, TAN Z, LIU X Q, et al. Determination of arsenic, mercury and lead in Radix puerariae by atomic florescence spectrophotometry with wet digestion[J]. Food Science,2014,35(4):151-154. doi: 10.7506/spkx1002-6630-201404031
    [15] 国土资源部. 生态地球化学评价动植物样品分析方法 第1部分: 锂、硼、钒等19个元素量的测定 电感耦合等离子体质谱: DZ/T 0253.1—2014[S]. 北京: 中国标准出版社, 2014.
    [16] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [17] 刘冲, 赵玲, 李秀华, 等.苎麻对农田土壤中汞、镉的吸收累积特征研究[J]. 农业环境科学学报,2020,39(5):1034-1042. doi: 10.11654/jaes.2019-1249

    LIU C, ZHAO L, LI X H, et al. Accumulation and transfer of mercury and cadmium in ramie from agricultural soils[J]. Journal of Agro-Environment Science,2020,39(5):1034-1042. doi: 10.11654/jaes.2019-1249
    [18] 龙玉梅, 刘杰, 傅校锋, 等.4种Cd超富集/富集植物修复性能的比较[J]. 江苏农业科学,2019,47(8):296-300.

    LONG Y M, LIU J, FU X F, et al. Comparative study on remediation performance of 4 kinds of Cd hyperaccumulators[J]. Jiangsu Agricultural Sciences,2019,47(8):296-300.
    [19] 郑陶, 李廷轩, 张锡洲, 等.水稻镉高积累品种对镉的富集特性[J]. 中国农业科学,2013,46(7):1492-1500. doi: 10.3864/j.issn.0578-1752.2013.07.020

    ZHENG T, LI T X, ZHANG X Z, et al. Accumulation characteristics of cadmium-accumulated rice cultivars with high cadmium accumulation[J]. Scientia Agricultura Sinica,2013,46(7):1492-1500. doi: 10.3864/j.issn.0578-1752.2013.07.020
    [20] 国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准 食品中污染物限量: GB 2762—2017[S]. 北京: 中国标准出版社, 2017.
    [21] 中华人民共和国商务部. 药用植物及制剂外经贸绿色行业标准: WM/T 2—2004[S]. 北京: 中国标准出版社, 2004.
    [22] 李广云, 曹永富, 赵书民, 等.土壤重金属危害及修复措施[J]. 山东林业科技,2011,41(6):96-101. doi: 10.3969/j.issn.1002-2724.2011.06.031
    [23] 孙正国.龙葵对镉污染土壤的响应及其修复效应研究[J]. 江苏农业科学,2015,43(10):397-401. doi: 10.15889/j.issn.1002-1302.2015.10.126
    [24] 潘雨齐, 黄仁志, 雷鸣, 等.镉在桑树体内的迁移与分布特征研究[J]. 农业环境科学学报,2016,35(8):1480-1487. doi: 10.11654/jaes.2015-1725

    PAN Y Q, HUANG R Z, LEI M, et al. Transportation and distribution of Cd in different varieties of mulberry (Moms alba L.)[J]. Journal of Agro-Environment Science,2016,35(8):1480-1487. doi: 10.11654/jaes.2015-1725
    [25] SALT D E, SMITH R D, RASKIN I. Phytoremediation[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1998,49:643-668. doi: 10.1146/annurev.arplant.49.1.643
    [26] 佘玮, 揭雨成, 邢虎成, 等.不同程度污染农田苎麻吸收积累镉特性研究[J]. 中国农学通报,2012,28(14):275-279. doi: 10.3969/j.issn.1000-6850.2012.14.054

    SHE W, JIE Y C, XING H C, et al. Cd uptake and accumulation of ramie planting in contaminated soil in Anhua and Zhuzhou of Hunan Province[J]. Chinese Agricultural Science Bulletin,2012,28(14):275-279. doi: 10.3969/j.issn.1000-6850.2012.14.054
    [27] 龙新宪, 王艳红, 刘洪彦.不同生态型东南景天对土壤中Cd的生长反应及吸收积累的差异性[J]. 植物生态学报,2008,32(1):168-175. doi: 10.3773/j.issn.1005-264x.2008.01.019

    LONG X X, WANG Y H, LIU H Y. Growth response and uptake differences between two ecotypes of sedum alfredii to soils cd[J]. Journal of Plant Ecology,2008,32(1):168-175. doi: 10.3773/j.issn.1005-264x.2008.01.019
    [28] 郭媛, 邱财生, 龙松华, 等.不同黄麻品种对重金属污染农田镉的富集和转移效率研究[J]. 农业环境科学学报,2019,38(8):1929-1935. doi: 10.11654/jaes.2019-0597

    GUO Y, QIU C S, LONG S H, et al. Cadmium accumulation and translocation in different jute (Corchorus capsularis L.) cultivars growing in heavy metal contaminated paddy soil[J]. Journal of Agro-Environment Science,2019,38(8):1929-1935. ⊕ doi: 10.11654/jaes.2019-0597
  • 加载中
图(3) / 表(6)
计量
  • 文章访问数:  323
  • HTML全文浏览量:  138
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-28

目录

    /

    返回文章
    返回