留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物炭负载纳米零价铁去除废水中重金属的研究进展

李华夏 林毅 周小斌 林华

李华夏,林毅,周小斌,等.生物炭负载纳米零价铁去除废水中重金属的研究进展[J].环境工程技术学报,2022,12(3):787-793 doi: 10.12153/j.issn.1674-991X.20210242
引用本文: 李华夏,林毅,周小斌,等.生物炭负载纳米零价铁去除废水中重金属的研究进展[J].环境工程技术学报,2022,12(3):787-793 doi: 10.12153/j.issn.1674-991X.20210242
LI H X,LIN Y,ZHOU X B,et al.Research progress on heavy metals removal from wastewater by biochar-supported nano zero-valent iron[J].Journal of Environmental Engineering Technology,2022,12(3):787-793 doi: 10.12153/j.issn.1674-991X.20210242
Citation: LI H X,LIN Y,ZHOU X B,et al.Research progress on heavy metals removal from wastewater by biochar-supported nano zero-valent iron[J].Journal of Environmental Engineering Technology,2022,12(3):787-793 doi: 10.12153/j.issn.1674-991X.20210242

生物炭负载纳米零价铁去除废水中重金属的研究进展

doi: 10.12153/j.issn.1674-991X.20210242
基金项目: 广西自然科学基金项目(2020GXNSFAA297256);广西高等学校高水平创新团队及卓越学者计划项目(桂财教函〔2018〕319);广西八桂学者和特聘专家项目;桂林理工大学科研基金项目(GUTQDJJ2019123)
详细信息
    作者简介:

    李华夏(1995—),男,硕士研究生,研究方向为重金属污染治理,923314699@qq.com

    通讯作者:

    林华(1984—),副教授,博士,研究方向为重金属污染治理、水污染控制技术,linhua5894@163.com

  • 中图分类号: X703

Research progress on heavy metals removal from wastewater by biochar-supported nano zero-valent iron

  • 摘要:

    纳米零价铁(nZVI)因比表面积大、反应活性高及独特的核壳结构,在去除水中重金属方面具有良好的应用前景。但nZVI自身存在易团聚、易氧化失活等缺点,使其工业推广和应用受到限制。将nZVI负载于生物炭(BC)制备生物炭负载型纳米零价铁(nZVI@BC)复合材料可在一定程度上克服nZVI的缺点,提高nZVI与重金属的反应活性。综述了nZVI@BC去除水中重金属的研究现状,着重介绍了不同BC材料用于nZVI@BC的制备、BC的改性及nZVI的修饰对nZVI@BC去除重金属性能的影响,阐述了nZVI@BC去除几种典型重金属的反应机理,并对nZVI@BC应用于水中重金属去除的发展前景进行了展望。

     

  • 图  1  nZVI去除不同重金属的机理示意

    Figure  1.  Mechanism of different heavy metals removal by nZVI

    表  1  不同BC制备的nZVI@BC对水溶液中重金属的最大吸附容量

    Table  1.   Maximum adsorption capacity of heavy metals by nZVI@BC prepared by different BC in aqueous solution

    BC原料吸附的重金属吸附容量/(mg/g)
    烟厂污泥[23]Cr(Ⅵ)75.23
    松木[24]As(Ⅴ)124.5
    水稻[25]Cr(Ⅵ)111.9
    湿地芦苇[26]Cr(Ⅵ)/Pb(Ⅱ)/Cd(Ⅱ)23.09/38.31/39.53
    杏仁壳[27]Cr(Ⅵ)24.16
    下载: 导出CSV

    表  2  不同化学方法改性BC制备的nZVI@BC对重金属的吸附容量

    Table  2.   Adsorption capacity of heavy metals by nZVI@BC with BC modified by different chemical methods

    改性方法吸附的重金属吸附容量/(mg/g)
    碳酸氢钠和生物质共同热解[28]Pb(Ⅱ)/Cu(Ⅱ)/
    Zn(Ⅱ)
    194.7/137.6
    /154.8
    磷酸预处理生物质[30]Cr(Ⅵ)209.93
    下载: 导出CSV

    表  3  不同nZVI改性方法制备的nZVI@BC对重金属的吸附性能

    Table  3.   Adsorption capacity of heavy metals by nZVI@BC with nZVI modified by different methods

    改性方法吸附的重金属吸附容量/(mg/g)
    CMC改性[36]Cr(Ⅵ)132.8
    PEG改性[37]Cr(Ⅵ)125.22
    二亚硫酸钠改性[38]Cr(Ⅵ)139.5
    SC改性[39]Cr(Ⅵ)199.46
    添加金属Pd[40]Cr(Ⅵ)117.1
    下载: 导出CSV
  • [1] YU Y, AN Q, JIN L, et al. Unraveling sorption of Cr(Ⅵ) from aqueous solution by FeCl3 and ZnCl2-modified corn stalks biochar: implicit mechanism and application[J]. Bioresource Technology,2020,297:122466. doi: 10.1016/j.biortech.2019.122466
    [2] PEI G P, ZHU Y E, WEN J G, et al. Vinegar residue supported nanoscale zero-valent iron: remediation of hexavalent chromium in soil[J]. Environmental Pollution,2020,256:113407. doi: 10.1016/j.envpol.2019.113407
    [3] ZHU L, TONG L H, ZHAO N, et al. Coupling interaction between porous biochar and nano zero valent iron/nano α-hydroxyl iron oxide improves the remediation efficiency of cadmium in aqueous solution[J]. Chemosphere,2019,219:493-503. doi: 10.1016/j.chemosphere.2018.12.013
    [4] FAN J, CHEN X, XU Z B, et al. One-pot synthesis of nZVI-embedded biochar for remediation of two mining arsenic-contaminated soils: arsenic immobilization associated with iron transformation[J]. Journal of Hazardous Materials,2020,398:122901. doi: 10.1016/j.jhazmat.2020.122901
    [5] 廖家隆, 张喆秋, 陈丽杰, 等.含砷废水处理研究进展[J]. 有色金属科学与工程,2018,9(1):86-91.

    LIAO J L, ZHANG Z Q, CHEN L J, et al. Research progress of arsenic-containing wastewater treatment[J]. Nonferrous Metals Science and Engineering,2018,9(1):86-91.
    [6] ZHANG J S, CHEN S J, ZHANG H W, et al. Removal behaviors and mechanisms of hexavalent chromium from aqueous solution by cephalosporin residue and derived chars[J]. Bioresource Technology,2017,238:484-491. doi: 10.1016/j.biortech.2017.04.081
    [7] 张慧, 李宁, 戴友芝.重金属污染的生物修复技术[J]. 化工进展,2004,23(5):562-565. doi: 10.3321/j.issn:1000-6613.2004.05.024

    ZHANG H, LI N, DAI Y Z. Research about the bioremediation of heavy metal pollution[J]. Chemical Industry and Engineering Progress,2004,23(5):562-565. doi: 10.3321/j.issn:1000-6613.2004.05.024
    [8] 黄熙贤. 生物炭改性材料对水体Cr(Ⅵ)的吸附还原机理研究[D]. 长沙: 湖南大学, 2017.
    [9] LIU C M, DIAO Z H, HUO W Y, et al. Simultaneous removal of Cu2+ and bisphenol A by a novel biochar-supported zero valent iron from aqueous solution: synthesis, reactivity and mechanism[J]. Environmental Pollution,2018,239:698-705. doi: 10.1016/j.envpol.2018.04.084
    [10] 张常安, 金蕾, 黄应平, 等.丙酮冲洗法提高纳米零价铁抗氧化性能[J]. 环境化学,2021,40(3):790-798. doi: 10.7524/j.issn.0254-6108.2020081808

    ZHANG C A, JIN L, HUANG Y P, et al. Anti-oxidation ability of nanoscale zero valent iron viaacetone flushing method[J]. Environmental Chemistry,2021,40(3):790-798. doi: 10.7524/j.issn.0254-6108.2020081808
    [11] 严子春, 吴大冰, 王峥嵘.纳米零价铁的制备及应用研究进展[J]. 应用化工,2021,50(3):789-792. doi: 10.3969/j.issn.1671-3206.2021.03.047

    YAN Z C, WU D B, WANG Z R. Progress of preparation and application of nanoscale zero-valent iron[J]. Applied Chemical Industry,2021,50(3):789-792. doi: 10.3969/j.issn.1671-3206.2021.03.047
    [12] DONG H R, DENG J M, XIE Y K, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(Ⅵ) removal from aqueous solution[J]. Journal of Hazardous Materials,2017,332:79-86. doi: 10.1016/j.jhazmat.2017.03.002
    [13] SHI L N, ZHANG X, CHEN Z L. Removal of chromium(Ⅵ) from wastewater using bentonite-supported nanoscale zero-valent iron[J]. Water Research,2011,45(2):886-892. doi: 10.1016/j.watres.2010.09.025
    [14] BHOWMICK S, CHAKRABORTY S, MONDAL P, et al. Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: kinetics and mechanism[J]. Chemical Engineering Journal,2014,243:14-23. doi: 10.1016/j.cej.2013.12.049
    [15] ZHU H J, JIA Y F, WU X, et al. Removal of arsenic from water by supported nano zero-valent iron on activated carbon[J]. Journal of Hazardous Materials,2009,172(2/3):1591-1596.
    [16] 刘美丽, 牛其建, 俞洋洋, 等.碳基材料负载纳米零价铁去除六价铬的研究进展[J]. 环境科学研究,2022,35(3):768-779.

    LIU M L, NIU Q J, YU Y Y, et al. Progress in removal of hexavalent chromium by carbon-based materials loaded with nano zero-valent iron[J]. Research of Environmental Sciences,2022,35(3):768-779.
    [17] 庞新宇, 刘文士, 李猛, 等.生物炭环境修复应用研究的文献计量学分析[J]. 环境工程技术学报,2021,11(4):740-749. doi: 10.12153/j.issn.1674-991X.20200261

    PANG X Y, LIU W S, LI M, et al. Research progress of biochar's application in environmental remediation based on bibliometrics[J]. Journal of Environmental Engineering Technology,2021,11(4):740-749. doi: 10.12153/j.issn.1674-991X.20200261
    [18] 黄开友, 申英杰, 王晓岩, 等.生物炭负载纳米零价铁制备及修复六价铬污染土壤技术研究进展[J]. 环境工程,2020,38(11):203-210.

    HUANG K Y, SHEN Y J, WANG X Y, et al. Review on preparation of bio-carbon loaded nano zero-valent iron and its application in remediating Cr(Ⅵ)-contaminated soil[J]. Environmental Engineering,2020,38(11):203-210.
    [19] WANG J L, WANG S Z. Preparation, modification and environmental application of biochar: a review[J]. Journal of Cleaner Production,2019,227:1002-1022. doi: 10.1016/j.jclepro.2019.04.282
    [20] 邓辉, 李政家, 金志文, 等.棉秆与污泥共热解制备生物炭工艺优化及其结构与吸附性能[J]. 农业工程学报,2016,32(24):248-254. doi: 10.11975/j.issn.1002-6819.2016.24.033

    DENG H, LI Z J, JIN Z W, et al. Process optimization of char prepared from co-pyrolysis of cotton stalk and sludge and analysis on its structure and adsorption capacity[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(24):248-254. doi: 10.11975/j.issn.1002-6819.2016.24.033
    [21] ZHANG J, JIN J W, WANG M Y, et al. Co-pyrolysis of sewage sludge and rice husk/bamboo sawdust for biochar with high aromaticity and low metal mobility[J]. Environmental Research,2020,191:110034. doi: 10.1016/j.envres.2020.110034
    [22] WANG Z P, WANG J, XIE L K, et al. Influence of the addition of cotton stalk during co-pyrolysis with sewage sludge on the properties, surface characteristics, and ecological risks of biochars[J]. Journal of Thermal Science,2019,28(4):755-762. doi: 10.1007/s11630-019-1100-1
    [23] 戴泽军, 李炳堂, 李鹏飞, 等.烟厂污泥热解制备载铁生物炭吸附水中Cr(Ⅵ)的研究[J]. 环境科学与技术,2020,43(11):116-123.

    DAI Z J, LI B T, LI P F, et al. Preparation of Fe-BC by pyrolysis of tobacco wastewater sludge and its adsorption of Cr(Ⅵ) from aqueous solution[J]. Environmental Science & Technology,2020,43(11):116-123.
    [24] WANG S S, GAO B, LI Y C, et al. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite:batch and continuous flow tests[J]. Journal of Hazardous Materials,2017,322:172-181.
    [25] QIAN L B, LIU S N, ZHANG W Y, et al. Enhanced reduction and adsorption of hexavalent chromium by palladium and silicon rich biochar supported nanoscale zero-valent iron[J]. Journal of Colloid and Interface Science,2019,533:428-436. doi: 10.1016/j.jcis.2018.08.075
    [26] ZHU S S, HO S H, HUANG X C, et al. Magnetic nanoscale zerovalent iron assisted biochar: interfacial chemical behaviors and heavy metals remediation performance[J]. ACS Sustainable Chemistry & Engineering,2017,5(11):9673-9682.
    [27] SHU Y R, JI B, CUI B H, et al. Almond shell-derived, biochar-supported, nano-zero-valent iron composite for aqueous hexavalent chromium removal: performance and mechanisms[J]. Nanomaterials (Basel, Switzerland),2020,10(2):198. doi: 10.3390/nano10020198
    [28] ZHAO L, ZHENG W, MAŠEK O, et al. Roles of phosphoric acid in biochar formation: synchronously improving carbon retention and sorption capacity[J]. Journal of Environmental Quality,2017,46(2):393-401. doi: 10.2134/jeq2016.09.0344
    [29] 唐宝玲, 李盟, 陈胜文, 等.生物炭负载零价纳米铁对溶液中的Cr6+去除的研究[J]. 上海第二工业大学学报,2019,36(3):159-165.

    TANG B L, LI M, CHEN S W, et al. Study on removal of Cr6+ in solution by nano zero-valent iron supported on biochar[J]. Journal of Shanghai Polytechnic University,2019,36(3):159-165.
    [30] YANG F, ZHANG S S, SUN Y Q, et al. Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal[J]. Bioresource Technology,2018,265:490-497. doi: 10.1016/j.biortech.2018.06.029
    [31] DIAO Z H, DU J J, JIANG D, et al. Insights into the simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero valent iron: coexistence effect and mechanism[J]. Science of the Total Environment,2018,642:505-515. doi: 10.1016/j.scitotenv.2018.06.093
    [32] 徐建玲, 张頔, 聂苗青, 等.PEI功能化秸秆生物炭对水中Cr6+的吸附性能[J]. 高等学校化学学报,2020,41(1):155-161. doi: 10.7503/cjcu20190418

    XU J L, ZHANG D, NIE M Q, et al. Adsorption of Cr6+ on polyethyleneimine-functionalized straw biochar from aqueous solution[J]. Chemical Journal of Chinese Universities,2020,41(1):155-161. doi: 10.7503/cjcu20190418
    [33] 侯素珍, 田浩然, 黄超, 等.氨基改性生物炭负载纳米零价铁去除水中Cr(Ⅵ)[J]. 环境科学学报,2020,40(11):3931-3938.

    HOU S Z, TIAN H R, HUANG C, et al. Removal of Cr(Ⅵ) from aqueous solution by amino-modified biochar supported nano zero-valent iron[J]. Acta Scientiae Circumstantiae,2020,40(11):3931-3938.
    [34] LIU H K, XU F, XIE Y L, et al. Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil[J]. Science of the Total Environment,2018,645:702-709. doi: 10.1016/j.scitotenv.2018.07.115
    [35] SAJJADI B, SHRESTHA R M, CHEN W Y, et al. Double-layer magnetized/functionalized biochar composite: role of microporous structure for heavy metal removals[J]. Journal of Water Process Engineering,2021,39:101677. doi: 10.1016/j.jwpe.2020.101677
    [36] ZHANG S, LYU H H, TANG J C, et al. A novel biochar supported CMC stabilized nano zero-valent iron composite for hexavalent chromium removal from water[J]. Chemosphere,2019,217:686-694. doi: 10.1016/j.chemosphere.2018.11.040
    [37] WU H H, WEI W X, XU C B, et al. Polyethylene glycol-stabilized nano zero-valent iron supported by biochar for highly efficient removal of Cr(Ⅵ)[J]. Ecotoxicology and Environmental Safety,2020,188:109902. doi: 10.1016/j.ecoenv.2019.109902
    [38] LI S S, YANG F, LI J S, et al. Porous biochar-nanoscale zero-valent iron composites: synthesis, characterization and application for lead ion removal[J]. Science of the Total Environment,2020,746:141037. doi: 10.1016/j.scitotenv.2020.141037
    [39] ZHOU H Y, YE M Y, ZHAO Y K, et al. Sodium citrate and biochar synergistic improvement of nanoscale zero-valent iron composite for the removal of chromium(Ⅵ) in aqueous solutions[J]. Journal of Environmental Sciences,2022,115:227-239. doi: 10.1016/j.jes.2021.05.044
    [40] QIAN L B, SHANG X, ZHANG B, et al. Enhanced removal of Cr(Ⅵ) by silicon rich biochar-supported nanoscale zero-valent iron[J]. Chemosphere,2019,215:739-745. doi: 10.1016/j.chemosphere.2018.10.030
    [41] 李士凤, 孙洪刚, 姚淑华, 等. 一种生物炭负载纳米铁镍复合材料去除水中六价铬方法: CN110745935A[P]. 2020-02-04.
    [42] HUANG D L, HU Z X, PENG Z W, et al. Cadmium immobilization in river sediment using stabilized nanoscale zero-valent iron with enhanced transport by polysaccharide coating[J]. Journal of Environmental Management,2018,210:191-200.
    [43] LIU K, LI F B, CUI J H, et al. Simultaneous removal of Cd(Ⅱ) and As(Ⅲ) by graphene-like biochar-supported zero-valent iron from irrigation waters under aerobic conditions: synergistic effects and mechanisms[J]. Journal of Hazardous Materials,2020,395:122623. doi: 10.1016/j.jhazmat.2020.122623
    [44] AMIRI M J, ROOHI R, GIL A. Numerical simulation of Cd(Ⅱ) removal by ostrich bone ash supported nanoscale zero-valent iron in a fixed-bed column system: utilization of unsteady advection-dispersion-adsorption equation[J]. Journal of Water Process Engineering,2018,25:1-14. doi: 10.1016/j.jwpe.2018.05.017
    [45] ZHANG Y L, LI Y T, DAI C M, et al. Sequestration of Cd(Ⅱ) with nanoscale zero-valent iron (nZVI): characterization and test in a two-stage system[J]. Chemical Engineering Journal,2014,244:218-226. doi: 10.1016/j.cej.2014.01.061
    [46] VENKATESWARLU S, LEE D, YOON M. Bioinspired 2D-carbon flakes and Fe3O4 nanoparticles composite for arsenite removal[J]. ACS Applied Materials & Interfaces,2016,8(36):23876-23885.
    [47] ZHANG X L, WU M F, DONG H, et al. Simultaneous oxidation and sequestration of As(Ⅲ) from water by using redox polymer-based Fe(Ⅲ) oxide nanocomposite[J]. Environmental Science & Technology,2017,51(11):6326-6334.
    [48] ZHU Y, ELZINGA E J. Macroscopic and spectroscopic assessment of the cosorption of Fe(Ⅱ) with As(Ⅲ) and As(V) on Al-oxide[J]. Environmental Science & Technology,2015,49(22):13369-13377.
    [49] BAKSHI S, BANIK C, RATHKE S J, et al. Arsenic sorption on zero-valent iron-biochar complexes[J]. Water Research,2018,137:153-163. doi: 10.1016/j.watres.2018.03.021
    [50] ZHOU Y M, GAO B, ZIMMERMAN A R, et al. Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions[J]. Bioresource Technology,2014,152:538-542. doi: 10.1016/j.biortech.2013.11.021
    [51] REYHANITABAR A, ALIDOKHT L, KHATAEE A R, et al. Application of stabilized Fe0 nanoparticles for remediation of Cr(Ⅵ)-spiked soil[J]. European Journal of Soil Science,2012,63(5):724-732. ◇ doi: 10.1111/j.1365-2389.2012.01447.x
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  468
  • HTML全文浏览量:  256
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-21
  • 网络出版日期:  2022-06-07

目录

    /

    返回文章
    返回