留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

菌藻共生系统净化污水处理厂尾水的条件探究与优化

贾晓彤 何小娟 封吉猛 沈剑 王欣泽

贾晓彤,何小娟,封吉猛,等.菌藻共生系统净化污水处理厂尾水的条件探究与优化[J].环境工程技术学报,2022,12(4):1177-1184 doi: 10.12153/j.issn.1674-991X.20210215
引用本文: 贾晓彤,何小娟,封吉猛,等.菌藻共生系统净化污水处理厂尾水的条件探究与优化[J].环境工程技术学报,2022,12(4):1177-1184 doi: 10.12153/j.issn.1674-991X.20210215
JIA X T,HE X J,FENG J M,et al.Optimization of conditions for purification of wastewater treatment plant effluent by microalgae-bacteria symbiotic system[J].Journal of Environmental Engineering Technology,2022,12(4):1177-1184 doi: 10.12153/j.issn.1674-991X.20210215
Citation: JIA X T,HE X J,FENG J M,et al.Optimization of conditions for purification of wastewater treatment plant effluent by microalgae-bacteria symbiotic system[J].Journal of Environmental Engineering Technology,2022,12(4):1177-1184 doi: 10.12153/j.issn.1674-991X.20210215

菌藻共生系统净化污水处理厂尾水的条件探究与优化

doi: 10.12153/j.issn.1674-991X.20210215
基金项目: 国家水体污染控制与治理科技重大专项(2012ZX07105-003,2014ZX07303-003-11)
详细信息
    作者简介:

    贾晓彤(1995—),女,硕士研究生,研究方向为污水处理,lwjxt95@163.com

    通讯作者:

    王欣泽(1974—),男,研究员,主要从事水污染控制工程研究,xinzewang@sjtu.edu.cn

  • 中图分类号: X703

Optimization of conditions for purification of wastewater treatment plant effluent by microalgae-bacteria symbiotic system

  • 摘要:

    城镇污水处理厂尾水排入水体后,尾水中的氮、磷仍易引起受纳水体富营养化问题,开展尾水深度处理以进一步去除氮、磷营养物质具有现实意义。通过试验研究了不同菌藻共培养对氮、磷的去除效果,筛选出优势菌藻组合,采用响应面法研究了通气量、光波长、细菌接种量对氮、磷去除效果的交互影响,提出最优参数组合,并建立菌藻共生系统,进行验证试验。结果表明:不同菌藻组合中,蛋白核小球藻-地衣芽胞杆菌-恶臭假单胞菌共培养组对TN、TP的去除效果较好;此菌藻共生系统在蓝光、通气量为1.8 L/min及细菌接种量为20%(体积比)条件下,TN去除率最大可达93.7%,1 d 后TP基本上完全被去除;在蓝光、通气量为2.0 L/min及细菌接种量为5%条件下,2 d后氮去除率可达98.4%;在红光、通气量为2.0~3.0 L/min及细菌接种量为10%~20%条件下,2 d后氨氮可完全被去除。菌藻共生系统对氮、磷去除效果的最优参数组合为蓝光、通气量为1.8 L/min及细菌接种量为20%,最优参数组合验证的结果与预测值相符,系统出水符合GB 3838—2002《地表水环境质量标准》Ⅴ类水质标准,可为菌藻共生系统的实际应用提供理论基础。

     

  • 图  1  不同菌藻共培养条件下的氮、磷去除效果

    Figure  1.  Nitrogen and phosphorus removal effects under co-cultivation of different bacteria and microalgae

    图  2  不同细菌接种量条件下光波长和通气量对TN去除率的影响

    Figure  2.  Effects of light wavelength and aeration rate on TN removal rate under different bacterial inoculation amount

    图  3  红光/蓝光条件下通气量和细菌接种量的交互作用对TN去除率的影响

    Figure  3.  Effects of the interaction of aeration rate and bacterial inoculation amount on TN removal rate under red/blue light conditions

    图  4  光波长和细菌接种量的交互作用对2 d氨氮去除率的影响

    Figure  4.  Effect of the interaction of light wavelength and bacterial inoculation amount on ammonia nitrogen removal after 2 days

    图  5  红光/蓝光条件下通气量和细菌接种量的交互作用对2 d氨氮去除率的影响

    Figure  5.  Effect of the interaction of aeration rate and bacterial inoculation amount on ammonia nitrogen removal after 2 days under red/blue light conditions

    图  6  光波长和细菌接种量交互作用对1 d的TP去除效果的影响

    Figure  6.  Effect of the interaction of light wavelength and bacterial inoculation amount on TP removal after 1 day

    图  7  培养5 d后菌藻共生情况SEM图

    Figure  7.  SEM diagram of symbiosis of bacteria and algae after 5 day's culture

    表  1  响应面优化试验的因子及水平设计

    Table  1.   Code and levels for testing variables of response surface methodology experiments

    试验组号光波长(A)
    通气量(B)/(L/min)
    细菌接种量(C)/%
    1红光25
    2蓝光210
    3蓝光210
    4蓝光210
    5蓝光35
    6蓝光15
    7红光310
    8蓝光120
    9白光310
    10白光220
    11蓝光320
    12白光110
    13白光25
    14蓝光210
    15蓝光210
    16红光110
    17红光220
    注:光波长为白光时,A=−1;为蓝光时,A=0;为红光时,A=1。
    下载: 导出CSV

    表  2  响应面试验结果

    Table  2.   Response surface methodology experimental results  

    试验
    组号
    去除率/%
    TNTP氨氮1 d 的TP2 d的氨氮
    189.9597.3998.1792.5296.25
    293.4199.5598.3985.9298.32
    392.0998.4897.5790.5196.36
    493.9898.6498.6981.8394.97
    588.2097.8198.4959.8489.12
    684.4699.0498.4660.0886.40
    789.1997.2698.3168.4996.36
    891.1597.2498.1587.6467.02
    989.6098.0797.9044.5556.94
    1092.4199.7198.4294.3743.43
    1189.8698.8398.3082.8290.52
    1282.8798.3398.6238.2846.92
    1386.7397.3398.5035.2974.05
    1491.2898.1398.5085.2193.49
    1591.1997.3997.6586.0295.43
    1689.5198.6898.2156.5886.62
    1792.2098.0698.1592.1794.33
    下载: 导出CSV

    表  3  响应值为TN、2 d的氨氮、1 d的TP去除率的方差分析结果

    Table  3.   Anova results of removal rate of TN, ammonia nitrogen after 2 days and TP after 1 days

    方差来源TN去除率2 d的氨氮去除率1 d的TP去除率
    FPFPFP
    模型14.110.001 159.80< 0.000 121.200.000 3
    A7.090.032 3316.34< 0.000 122.820.002 0
    B5.540.050 834.140.000 60.400.548 4
    C31.000.000 832.800.000 745.750.000 3
    AB11.630.011 30.002 00.965 40.240.636 6
    AC3.490.104 118.680.003 523.830.001 8
    BC7.180.031 611.630.011 30.520.494 7
    A27.140.031 999.06< 0.000 125.170.001 5
    B241.650.000 334.110.000 651.400.000 2
    C27.290.030 60.880.379 40.540.486 8
    失拟项0.240.863 25.760.061 96.620.049 7
    下载: 导出CSV
  • [1] 国家环境保护总局. 城镇污水处理厂污染物排放标准: GB 18918—2002[S]. 北京: 中国环境科学出版社, 2002.
    [2] 国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838—2002[S]. 北京: 中国环境科学出版社, 2002.
    [3] 谢艳艳, 吉凯锋, 纪婧, 等.膜-高效藻类塘工艺处理污水厂尾水[J]. 水处理技术,2016,42(6):67-70.

    XIE Y Y, JI K F, JI J, et al. Combined membrane-high rate algal pound for advanced treatment of municipal wastewater treatment plant effluent[J]. Technology of Water Treatment,2016,42(6):67-70.
    [4] 赵建国, 李洪波, 刘存歧, 等.永定河怀来段水体富营养化评价[J]. 环境工程技术学报,2018,8(3):248-256. doi: 10.3969/j.issn.1674-991X.2018.03.033

    ZHAO J G, LI H B, LIU C Q, et al. Evaluation of eutrophication of water body in Huailai section of Yongding River[J]. Journal of Environmental Engineering Technology,2018,8(3):248-256. doi: 10.3969/j.issn.1674-991X.2018.03.033
    [5] SALAMA E S, KURADE, M B, ABOU-SHANAB R A I, et al. Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation[J]. Renewable and Sustainable Energy Reviews,2017,79:1189-1211. doi: 10.1016/j.rser.2017.05.091
    [6] CHAMBERLIN J, HARRISON K, ZHANG W. Impact of nutrient availability on tertiary wastewater treatment by Chlorella vulgaris[J]. Water Environment Research,2018,90(11):2008-2016. doi: 10.2175/106143017X15131012188114
    [7] ZHANG S S, LIU H, FAN J F, et al. Cultivation of Scenedesmus dimorphus with domestic secondary effluent and energy evaluation for biodiesel production.[J]. Environmental Technology,2015,36(7):929-936. doi: 10.1080/09593330.2014.966769
    [8] LÜ J P, FENG J, LIU Q, et al. Microalgal cultivation in secondary effluent: recent developments and future work[J]. International Journal of Molecular Sciences,2017,18(1):1-18.
    [9] LANANAN F, HAMID S H A, DIN W N S, et al. Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus utilizing Effective Microorganism (EM-1) and microalgae (Chlorella sp. )[J]. International Biodeterioration & Biodegradation,2014,95:127-134.
    [10] 胡洪营, 李鑫, 杨佳.基于微藻细胞培养的水质深度净化与高价值生物质生产耦合技术[J]. 生态环境学报,2009,18(3):1122-1127. doi: 10.3969/j.issn.1674-5906.2009.03.059

    HU H Y, LI X, YANG J. Coupling of wastewater deep purification and high quality biomass production based on microalgae cultivation[J]. Ecology and Environment,2009,18(3):1122-1127. doi: 10.3969/j.issn.1674-5906.2009.03.059
    [11] 骆小英. 蛋白核小球藻高效生物转化硝酸盐联产高价值生物质[D]. 广州: 华南理工大学, 2020.
    [12] 汤会军, 李鑫, 胡洪营, 等.初始密度及饥饿对栅藻LX1氮磷去除的影响[J]. 水处理技术,2010,36(7):33-35.

    TANG H J, LI X, HU H Y, et al. Effect of initial cell densities and starvation treatment on the nitrogen, phosphorus removal properties of Scenedesmus sp. LX1[J]. Technology of Water Treatment,2010,36(7):33-35.
    [13] 付婷婷, 马宁, 蒙健宗, 等.基于响应面法优化一株海洋绿藻胞内多糖提取工艺[J]. 中国酿造,2015,34(9):115-120. doi: 10.11882/j.issn.0254-5071.2015.09.027

    FU T T, MA N, MENG J Z, et al. Optimization of extraction technology of a marine algae intracellular polysaccharide based on response surface methodology[J]. China Brewing,2015,34(9):115-120. doi: 10.11882/j.issn.0254-5071.2015.09.027
    [14] VILLAY A, LAROCHE C, RORIZ D, et al. Optimisation of culture parameters for exopolysaccharides production by the microalga Rhodella violacea[J]. Bioresource Technology,2013,146:732-735. doi: 10.1016/j.biortech.2013.07.030
    [15] KENDIRLIOGLU G, AGIRMAN N, CETIN A K. The effects of photoperiod on the growth, protein amount and pigment content of Chlorella vulgaris[J]. Turkish Journal of Science & Technology,2015,10(2):7-10.
    [16] SCHULZE P S C, PEREIRA H G C, SANTOS T F C, et al. Effect of light quality supplied by light emitting diodes (LEDs) on growth and biochemical profiles of Nannochloropsis oculata and Tetraselmis chuii[J]. Algal Research,2016,16:387-398. doi: 10.1016/j.algal.2016.03.034
    [17] PRAVEEN P, LOH K C. Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis[J]. Applied Microbiology and Biotechnology,2015,99(23):10345-10354. doi: 10.1007/s00253-015-6896-3
    [18] WANG Y, YANG Y, MA F, et al. Optimization of Chlorella vulgaris and bioflocculant-producing bacteria co-culture: enhancing microalgae harvesting and lipid content[J]. Letters in Applied Microbiology,2015,60(5):497-503. doi: 10.1111/lam.12403
    [19] ZHAO B T, SU Y X. Process effect of microalgal-carbon dioxide fixation and biomass production: a review[J]. Renewable and Sustainable Energy Reviews,2014,31:121-132. doi: 10.1016/j.rser.2013.11.054
    [20] SCHULZE P S, BARREIRA L A, PEREIRA H G, et al. Light emitting diodes (LEDs) applied to microalgal production[J]. Trends in Biotechnology,2014,32(8):422-430. doi: 10.1016/j.tibtech.2014.06.001
    [21] 蔡天明, 管莉菠, 崔中利, 等.恶臭假单胞菌(Pseudomonas putida)GM6的聚磷特性研究[J]. 土壤学报,2006,43(1):117-123. doi: 10.3321/j.issn:0564-3929.2006.01.017

    CAI T M, GUAN L B, CUI Z L, et al. Characterization of Pseudomonas putida GM6 with high capability of accumulating poly-P[J]. Acta Pedologica Sinica,2006,43(1):117-123. doi: 10.3321/j.issn:0564-3929.2006.01.017
    [22] JI X Y, JIANG M Q, ZHANG J B, et al. The interactions of algae-bacteria symbiotic system and its effects on nutrients removal from synthetic wastewater[J]. Bioresource Technology,2018,247:44-50. doi: 10.1016/j.biortech.2017.09.074
    [23] ESTEVES A F, SOARES O S G P, VILAR V J P, et al. The effect of light wavelength on CO2 capture, biomass production and nutrient uptake by green microalgae: a step forward on process integration and optimisation[J]. Energies,2020,13(2):1-14.
    [24] DAO G H, WU G X, WANG X X, et al. Enhanced microalgae growth through stimulated secretion of indole acetic acid by symbiotic bacteria[J]. Algal Research,2018,33:345-351. ◇ doi: 10.1016/j.algal.2018.06.006
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  329
  • HTML全文浏览量:  224
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-06

目录

    /

    返回文章
    返回