留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京市通州区秋季典型工地出口道路尘负荷排放特征

王海斌 樊守彬 韩力慧 李婷婷 曲松 崔浩然 刘俊芳

王海斌,樊守彬,韩力慧,等.北京市通州区秋季典型工地出口道路尘负荷排放特征[J].环境工程技术学报,2022,12(1):6-14 doi: 10.12153/j.issn.1674-991X.20210115
引用本文: 王海斌,樊守彬,韩力慧,等.北京市通州区秋季典型工地出口道路尘负荷排放特征[J].环境工程技术学报,2022,12(1):6-14 doi: 10.12153/j.issn.1674-991X.20210115
WANG H B,FAN S B,HAN L H,et al.Emission characteristics of road silt loading at the exit of typical construction sites in autumn in Tongzhou District, Beijing[J].Journal of Environmental Engineering Technology,2022,12(1):6-14 doi: 10.12153/j.issn.1674-991X.20210115
Citation: WANG H B,FAN S B,HAN L H,et al.Emission characteristics of road silt loading at the exit of typical construction sites in autumn in Tongzhou District, Beijing[J].Journal of Environmental Engineering Technology,2022,12(1):6-14 doi: 10.12153/j.issn.1674-991X.20210115

北京市通州区秋季典型工地出口道路尘负荷排放特征

doi: 10.12153/j.issn.1674-991X.20210115
基金项目: 北京市科技计划项目(Z191100009119011);大气重污染成因与治理攻关项目(DQGG0201)
详细信息
    作者简介:

    王海斌(1995—),男,硕士研究生,主要从事大气污染防治研究,982819520@qq.com

    通讯作者:

    樊守彬(1981—),男,研究员,博士,主要从事大气污染防治研究, fanshoubin@163.com

  • 中图分类号: X513

Emission characteristics of road silt loading at the exit of typical construction sites in autumn in Tongzhou District, Beijing

  • 摘要: 为研究不同类型工地以及搅拌站和消纳场出口道路尘负荷变化特征,于2020年秋季对北京市通州区主要施工工地(场站)出口道路及137条常规道路(指未受工地影响的公共道路,包括城市道路和公路)进行道路尘负荷监测。根据AP-42模型计算分析典型工地(场站)出口道路扬尘排放因子和排放量。结果表明:2020年秋季北京市通州区不同类型工地(场站)出口2个方向100 m道路尘负荷均值呈搅拌站>消纳场>拆迁工地>房建工地>水务工地>园林绿化工地>交通工地;常规道路尘负荷均值为0.59 g/m2,各典型工地(场站)出口2个方向100 m道路尘负荷均值是常规道路的1.3~21.1倍;典型工地(场站)出口道路尘负荷随距出口距离变化在不同的工地类型之间差异明显,其出口2个方向各200 m道路的PM10和PM2.5扬尘排放因子高出其背景值的1.26~7.37倍,对应的道路扬尘排放量相当于背景点道路路长增加了0.10~2.55 km,平均值相当于13个典型工地(场站)出口道路各增加了1.16 km;所有监测工地(场站)出口及周边道路尘负荷和道路扬尘PM10、PM2.5排放量空间分布表现为北低南高,其影响因素与工地(场站)类型和密度分布、出口道路类型及车流量等密切相关。

     

  • 图  1  北京市通州区典型工地(场站)分布

    Figure  1.  Typical construction sites (stations) distribution in Tongzhou District, Beijing

    图  2  不同类型工地(场站)出口道路尘负荷特征

    Figure  2.  Characteristics of road silt loading at exits of different types of construction sites (stations)

    图  3  不同类型工地(场站)出口道路尘负荷随距离变化特征

    注:出口距离负值代表向左,正值代表向右。

    Figure  3.  Variation characteristics of road silt loading with distance at exits of different types of construction sites (stations)

    图  4  不同类型工地(场站)出口及背景点道路排放因子特征

    Figure  4.  Characteristics of road emission factors at exits and background points of different construction sites (stations)

    图  5  典型工地(场站)出口道路日均车流量

    Figure  5.  Average daily traffic flow at the exit road of typical construction sites (stations)

    图  6  工地(场站)及其出口和周边道路尘负荷分布特征

    Figure  6.  Silt loading distribution characteristics at the exit and surrounding roads of the construction sites (stations)

    图  7  各工地(场站)出口道路PM10、PM2.5排放量空间分布

    Figure  7.  Spatial distribution of PM10 and PM2.5 emissions on exit roads of each construction site (station)

    表  1  典型工地(场站)出口2个方向100 m尘负荷特征

    Table  1.   Silt loading characteristics of 100 m in two directions at the exit of typical construction sites (stations) g/m2

    编号 工地(场站)类型 出口道路 工地(场站)出口2个方向
    100 m尘负荷均值
    1 房建 新华北路 2.63
    2 房建 芙蓉西路 0.85
    3 交通 北堤路 0.79
    4 交通 铺外路 1.43
    5 水务 通胡大街 1.75
    6 水务 滨惠南二街 0.94
    7 园林绿化 铺外路 2.54
    8 园林绿化 通惠北路 2.63
    9 拆迁 五里店西路 10.76
    10 拆迁 张采路 3.50
    11 搅拌站 董北路 12.45
    12 消纳场 辛房路 11.46
    13 消纳场 三小路 4.34
    14 通州区常规道路 0.59
    下载: 导出CSV

    表  2  不同类型工地(场站)出口及背景点道路扬尘排放特征

    Table  2.   Road dust emission characteristics at exits and background points of different types of construction sites (stations)

    编号 工地(场站)类型 出口道路PM10
    排放量/(kg/d)
    背景点PM10
    排放量/(kg/d)
    出口道路PM2.5
    排放量/(kg/d)
    背景点PM2.5
    排放量/(kg/d)
    背景点增加的
    道路长度/km
    1 房建 1 550.92 465.02 375.22 112.50 0.93
    2 房建 802.03 636.40 194.04 154.80 0.10
    3 交通 174.53 63.48 42.22 15.36 0.70
    4 交通 8 251.70 4 753.29 1 996.38 1 149.99 0.29
    5 水务 9 594.51 2 561.48 2 321.25 619.71 1.10
    6 水务 608.10 241.03 147.12 58.31 0.61
    7 园林绿化 13 918.31 4 753.29 3 367.33 1 149.99 0.77
    8 园林绿化 1 550.92 367.21 375.22 88.84 1.29
    9 拆迁 1 879.22 470.65 454.65 113.87 1.20
    10 拆迁 18 028.52 2 447.52 4 361.74 592.14 2.55
    11 搅拌站 2 146.01 430.38 519.20 104.12 1.59
    12 消纳场 5 919.55 975.46 1 432.15 236.00 2.03
    13 消纳场 2 446.51 434.69 591.90 105.17 1.85
    下载: 导出CSV
  • [1] VLASOV D, KOSHELEVA N, KASIMOV N. Spatial distribution and sources of potentially toxic elements in road dust and its PM10 fraction of Moscow megacity[J]. Science of the Total Environment,2021,761:143267. doi: 10.1016/j.scitotenv.2020.143267
    [2] FAN M Y, ZHANG Y L, LIN Y C, et al. Specific sources of health risks induced by metallic elements in PM2.5 during the wintertime in Beijing, China[J]. Atmospheric Environment,2021,246:118112. doi: 10.1016/j.atmosenv.2020.118112
    [3] ZHOU W, CHEN C, LEI L, et al. Temporal variations and spatial distributions of gaseous and particulate air pollutants and their health risks during 2015-2019 in China[J]. Environmental Pollution,2021,272:116031. doi: 10.1016/j.envpol.2020.116031
    [4] KUL A O. Report on the state of the environment in Moscow in 2018[R]. Moscow: Department of Nature Management and Environmental Protection of Moscow Government, 2019.
    [5] ALVES C A, EVTYUGINA M, VICENTE A M P, et al. Chemical profiling of PM10 from urban road dust[J]. Science of the Total Environment,2018,634:41-51. doi: 10.1016/j.scitotenv.2018.03.338
    [6] MA Y K, GONG M L, ZHAO H T, et al. Contribution of road dust from Low Impact Development (LID) construction sites to atmospheric pollution from heavy metals[J]. Science of the Total Environment,2020,698:134243. doi: 10.1016/j.scitotenv.2019.134243
    [7] MIGUEL A G, CASS G R, GLOVSKY M M, et al. Allergens in paved road dust and airborne particles[J]. Environmental Science & Technology,1999,33(23):4159-4168.
    [8] TIITTANEN P, TIMONEN K L, RUUSKANEN J, et al. Fine particulate air pollution, resuspended road dust and respiratory health among symptomatic children[J]. The European Respiratory Journal,1999,13(2):266-273. doi: 10.1034/j.1399-3003.1999.13b08.x
    [9] VENKATRAM A. A critique of empirical emission factor models: a case study of the AP-42 model for estimating PM10 emissions from paved roads[J]. Atmospheric Environment,2000,34(1):1-11. doi: 10.1016/S1352-2310(99)00330-1
    [10] VENKATRAM A, FITZ D, BUMILLER K, et al. Using a dispersion model to estimate emission rates of particulate matter from paved roads[J]. Atmospheric Environment,1999,33(7):1093-1102. doi: 10.1016/S1352-2310(98)00316-1
    [11] TRUJILLO-GONZÁLEZ J M, TORRES-MORA M A, JIMÉNEZ-BALLESTA R, et al. Land-use-dependent spatial variation and exposure risk of heavy metals in road-deposited sediment in Villavicencio, Colombia[J]. Environmental Geochemistry and Health,2019,41(2):667-679. doi: 10.1007/s10653-018-0160-6
    [12] SAHU S K, BEIG G, PARKHI N S. Emissions inventory of anthropogenic PM2.5 and PM10 in Delhi during Commonwealth Games 2010[J]. Atmospheric Environment,2011,45(34):6180-6190. doi: 10.1016/j.atmosenv.2011.08.014
    [13] BOGACKI M, MAZUR M, OLENIACZ R, et al. Re-entrained road dust PM10 emission from selected streets of Krakow and its impact on air quality[J]. E3S Web of Conferences,2018,28:01003. doi: 10.1051/e3sconf/20182801003
    [14] SINGH V, BISWAL A, KESARKAR A P, et al. High resolution vehicular PM10 emissions over megacity Delhi: relative contributions of exhaust and non-exhaust sources[J]. Science of the Total Environment,2020,699:134273. doi: 10.1016/j.scitotenv.2019.134273
    [15] PACHON J E, VANEGAS S, SAAVEDRA C, et al. Evaluation of factors influencing road dust loadings in a Latin American urban center[J]. Journal of the Air & Waste Management Association,2021,71(2):268-280.
    [16] PANT P, HARRISON R M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: a review[J]. Atmospheric Environment,2013,77:78-97. doi: 10.1016/j.atmosenv.2013.04.028
    [17] 樊守彬, 张东旭, 田灵娣, 等.北京市交通扬尘PM2.5排放清单及空间分布特征[J]. 环境科学研究,2016,29(1):20-28.

    FAN S B, ZHANG D X, TIAN L D, et al. Emission inventory and spatial distribution of road fugitive dust PM2.5 in Beijing[J]. Research of Environmental Sciences,2016,29(1):20-28.
    [18] 樊守彬, 张东旭, 田灵娣.AP-42道路交通扬尘排放模型评估及其在北京市的应用[J]. 环境工程学报,2016,10(5):2501-2506. doi: 10.12030/j.cjee.201412180

    FAN S B, ZHANG D X, TIAN L D. Assessment for AP-42 model of road dust emissions and its application in Beijing, China[J]. Chinese Journal of Environmental Engineering,2016,10(5):2501-2506. doi: 10.12030/j.cjee.201412180
    [19] 樊守彬, 杨涛, 李雪峰, 等.北京城市副中心道路扬尘排放清单与控制情景[J]. 环境科学与技术,2019,42(4):173-179.

    FAN S B, YANG T, LI X F, et al. Emission inventory and control scenario analysis for road fugitive dust in sub-center of Beijing[J]. Environmental Science & Technology,2019,42(4):173-179.
    [20] 樊守彬, 田刚, 李钢, 等.北京铺装道路交通扬尘排放规律研究[J]. 环境科学,2007,28(10):2396-2399. doi: 10.3321/j.issn:0250-3301.2007.10.041

    FAN S B, TIAN G, LI G, et al. Emission characteristics of paved roads fugitive dust in Beijing[J]. Environmental Science,2007,28(10):2396-2399. doi: 10.3321/j.issn:0250-3301.2007.10.041
    [21] 王凯, 樊守彬, 孙改红, 等.北京市延庆区道路扬尘排放特征及影响因素[J]. 环境工程技术学报,2019,9(1):1-7. doi: 10.3969/j.issn.1674-991X.2019.01.001

    WANG K, FAN S B, SUN G H, et al. Emission characteristics and impact factors of road fugitive dust in Yanqing District, Beijing City[J]. Journal of Environmental Engineering Technology,2019,9(1):1-7. doi: 10.3969/j.issn.1674-991X.2019.01.001
    [22] 王凯, 樊守彬, 孙改红, 等.基于行驶里程的北京市延庆区机动车排放清单建立及特征分析[J]. 环境工程技术学报,2019,9(2):119-125. doi: 10.12153/j.issn.1674-991X.2018.09.140

    WANG K, FAN S B, SUN G H, et al. Motor vehicles emission inventory at county level based on vehicle kilometers travel: a case study of Yanqing District of Beijing[J]. Journal of Environmental Engineering Technology,2019,9(2):119-125. doi: 10.12153/j.issn.1674-991X.2018.09.140
    [23] 亓浩雲, 樊守彬, 王凯.北京市不同功能区冬季道路扬尘排放特征[J]. 环境工程技术学报,2020,10(3):323-329. doi: 10.12153/j.issn.1674-991X.20190171

    QI H Y, FAN S B, WANG K. Characteristics of dust emissions from roads in different functional areas of Beijing[J]. Journal of Environmental Engineering Technology,2020,10(3):323-329. doi: 10.12153/j.issn.1674-991X.20190171
    [24] 彭康, 杨杨, 郑君瑜, 等.珠江三角洲地区铺装道路扬尘排放因子与排放清单研究[J]. 环境科学学报,2013,33(10):2657-2663.

    PENG K, YANG Y, ZHENG J Y, et al. Emission factor and inventory of paved road fugitive dust sources in the Pearl River Delta region[J]. Acta Scientiae Circumstantiae,2013,33(10):2657-2663.
    [25] 何月欣. 基于AP-42方法的东北三省道路扬尘排放清单研究[D]. 长春: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2018.
    [26] 杨乃旺, 宋文斌, 闫东杰, 等.基于积尘负荷的西安市铺装道路扬尘排放研究[J]. 环境科学学报,2021,41(4):1259-1266.

    YANG N W, SONG W B, YAN D J, et al. Emission characteristics of pavement road dust in Xi'an based on dust load method[J]. Acta Scientiae Circumstantiae,2021,41(4):1259-1266.
    [27] 田刚, 樊守彬, 李钢, 等.施工工地出口附近道路交通扬尘排放特征研究[J]. 环境科学,2007,28(11):2626-2629. doi: 10.3321/j.issn:0250-3301.2007.11.038

    TIAN G, FAN S B, LI G, et al. Characteristics of fugitive dust emission from paved road near construction activities[J]. Environmental Science,2007,28(11):2626-2629. doi: 10.3321/j.issn:0250-3301.2007.11.038
    [28] 黄玉虎, 韩凯丽, 陈丽媛, 等.北京市混凝土搅拌站扬尘排放因子及排放清单[J]. 中国环境科学,2017,37(10):3699-3707. doi: 10.3969/j.issn.1000-6923.2017.10.011

    HUANG Y H, HAN K L, CHEN L Y, et al. Emission factor and inventory for fugitive dust from concrete batching plants in Beijing[J]. China Environmental Science,2017,37(10):3699-3707. doi: 10.3969/j.issn.1000-6923.2017.10.011
    [29] 北京市环保局. 新一轮北京PM2.5来源解析发布: 燃煤不再是大气污染主要来源[N]. 人民日报, 2018-05-15(2).
    [30] YANG X W, CHENG S Y, LANG J L, et al. Characterization of aircraft emissions and air quality impacts of an international airport[J]. Journal of Environmental Sciences,2018,72:198-207. doi: 10.1016/j.jes.2018.01.007
    [31] US Environmental Protection Agency. Emission factor documentation for AP-42, Section 13.2.1[R]. US Measurement Policy Group Office of Air Quality Planning and Standards, 2011: 4-16.
    [32] 杨德容, 叶芝祥, 杨怀金, 等.成都市铺装道路扬尘排放清单及空间分布特征研究[J]. 环境工程,2015,33(11):83-87.

    YANG D R, YE Z X, YANG H J, et al. Emission inventory and spatial distribution of paved road fugitive dust in Chengdu in Sichuan Province[J]. Environmental Engineering,2015,33(11):83-87.
    [33] 梁珊, 伏晴艳, 刘启贞, 等.上海市秋季典型建筑工地结构施工阶段扬尘污染特征[J]. 环境污染与防治,2018,40(12):1394-1399.

    LIANG S, FU Q Y, LIU Q Z, et al. The pollution characterizations of fugitive dust of a typical construction site during the structure construction period in autumn in Shanghai[J]. Environmental Pollution & Control,2018,40(12):1394-1399.
    [34] YAN H, DING G L, FENG K L, et al. Systematic evaluation framework and empirical study of the impacts of building construction dust on the surrounding environment[J]. Journal of Cleaner Production,2020,275:122767. doi: 10.1016/j.jclepro.2020.122767
    [35] 黄天健. 建筑工程施工阶段扬尘监测及健康损害评价[D]. 北京: 清华大学, 2013.
    [36] CHERIYAN D, HYUN K Y, JAEGOO H, et al. Assessing the distributional characteristics of PM10, PM2.5, and PM1 exposure profile produced and propagated from a construction activity[J]. Journal of Cleaner Production,2020,276:124335. □ doi: 10.1016/j.jclepro.2020.124335
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  118
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-07

目录

    /

    返回文章
    返回