留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水体原位修复中沉水植物化感物质的分离与鉴定

张之浩 李威 吴晓芙

张之浩, 李威, 吴晓芙. 水体原位修复中沉水植物化感物质的分离与鉴定[J]. 环境工程技术学报, 2021, 11(6): 1164-1172. doi: 10.12153/j.issn.1674-991X.20210090
引用本文: 张之浩, 李威, 吴晓芙. 水体原位修复中沉水植物化感物质的分离与鉴定[J]. 环境工程技术学报, 2021, 11(6): 1164-1172. doi: 10.12153/j.issn.1674-991X.20210090
ZHANG Zhihao, LI Wei, WU Xiaofu. Allelochemicals isolation and identification of submerged macrophyte in in-situ remediation[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1164-1172. doi: 10.12153/j.issn.1674-991X.20210090
Citation: ZHANG Zhihao, LI Wei, WU Xiaofu. Allelochemicals isolation and identification of submerged macrophyte in in-situ remediation[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1164-1172. doi: 10.12153/j.issn.1674-991X.20210090

水体原位修复中沉水植物化感物质的分离与鉴定

doi: 10.12153/j.issn.1674-991X.20210090
详细信息
    作者简介:

    张之浩(1983—),男,副教授,博士,主要从事水生态环境修复研究, zachary77@163.com

  • 中图分类号: X703

Allelochemicals isolation and identification of submerged macrophyte in in-situ remediation

  • 摘要: 水体中蓝绿藻的大量生长是引起水体富营养化的重要原因,故而在原位生态修复中抑制蓝绿藻的生长至关重要。藻类的生长可被沉水植物分泌的某些化感物质所抑制,对沉水植物分泌的化感物质进行定性定量的研究,探明其作用机理对富营养化水体的生态治理具有一定的理论指导与实践意义。选取我国南方地区常见的狐尾藻(Myriophyllum verticillatum)、苦草(Vallisneria natans)、伊乐藻(Elodea canadensis)、轮叶黑藻(Hydrilla verticillata)和金鱼藻(Ceratophyllum demersum)5种沉水植物,通过对其水培液做GC-MS分析,鉴定了沉水植物次生代谢物的种类,并对其潜在的抑藻效应进行探究。结果显示:水培液中共检测出56种化合物,其中检出最多的为有机酸类物质;狐尾藻、苦草、伊乐藻和黑藻分泌的有机酸类物质含量高于其他检出物质,而金鱼藻的水培液检出物中酮和酯类物质含量较高。研究推测,狐尾藻水培液中检测鉴定出的琥珀酸、柠檬酸和苯酚为主要的化感物质,苦草水培液中的乳酸、癸酸、壬二酸、硬脂酸、月桂酸和苯酚起主要的抑藻作用;伊乐藻水培液中的主要化感物质为壬二酸、对羟基苯甲酸和棕榈酸,黑藻和金鱼藻水培液中起抑藻作用的物质为壬酸、阿魏酸和癸酸、油酸、乙酸丁酯和邻苯二甲酸二异丁酯。

     

  • [1] 张之浩, 吴晓芙, 李威. 沉水植物在富营养化水体原位生态修复中的功能[J]. 中南林业科技大学学报, 2018, 38(3):115-121.

    ZHANG Z H, WU X F, LI W. Functions of submerged macrophytes in in situ ecological restoration of eutrophic waters[J]. Journal of Central South University of Forestry & Technology, 2018, 38(3):115-121.
    [2] 曹开银, 丁海涛, 邓超, 等. 湿地水生植物对富营养化水体的净化效果研究[J]. 生物学杂志, 2019, 36(1):39-42.

    CAO K Y, DING H T, DENG C, et al. Purification effects of wetland aquatic plants on eutrophic water[J]. Journal of Biology, 2019, 36(1):39-42.
    [3] 张之浩, 李威, 吴晓芙. 6种沉水植物对富营养化水体化感抑藻效果研究[J]. 湘潭大学自然科学学报, 2017, 39(2):55-60.

    ZHANG Z H, LI W, WU X F. Allelopathic effect of six submerged macrophytes on algae growth in eutrophied water[J]. Natural Science Journal of Xiangtan University, 2017, 39(2):55-60.
    [4] LI W, ZHANG Z H, ASHRAF M A. Allelopathic effects of various aquatic plants in eutrophic water areas[J]. Journal of Coastal Research, 2018, 82(Suppl 1):137.
    doi: 10.2112/SI82-019.1
    [5] IBRAHIM M, AL-FIFI Z. Mechanism of pollution control for aquatic plant water hyacinth[J]. The Open Spectroscopy Journal, 2010, 4(1):10-15.
    doi: 10.2174/1874383801004010010
    [6] 党二莎, 龙超, 张楠. 大鹏湾近岸海域水质状况与富营养化水平[J]. 环境工程技术学报, 2020, 10(4):623-630.

    DANG E S, LONG C, ZHANG N. Study on water quality and eutrophication level in the coastal area of Dapeng Bay[J]. Journal of Environmental Engineering Technology, 2020, 10(4):623-630.
    [7] 赵建国, 李洪波, 刘存歧, 等. 永定河怀来段水体富营养化评价[J]. 环境工程技术学报, 2018, 8(3):248-256.

    ZHAO J G, LI H B, LIU C Q, et al. Evaluation of eutrophication of water body in Huailai section of Yongding River[J]. Journal of Environmental Engineering Technology, 2018, 8(3):248-256.
    [8] 闵奋力, 左进城, 刘碧云, 等. 穗状狐尾藻与不同生长期苦草种间竞争研究[J]. 植物科学学报, 2016, 34(1):47-55.

    MIN F L, ZUO J C, LIU B Y, et al. Competition between Myriophyllum spicatum L.and Vallisneria natans(Lour.)Hara at different growth stages[J]. Plant Science Journal, 2016, 34(1):47-55.
    [9] 钱燕萍, 赵楚, 田如男. 水生植物对藻类的化感作用研究进展[J]. 生物学杂志, 2018, 35(6):95-97.

    QIAN Y P, ZHAO C, TIAN R N. Research advances in inhibitory effects on phytoplankton mediated by aquatic plants[J]. Journal of Biology, 2018, 35(6):95-97.
    [10] ZHU J Y, LIU B Y, WANG J, et al. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion[J]. Aquatic Toxicology, 2010, 98(2):196-203.
    doi: 10.1016/j.aquatox.2010.02.011
    [11] SYED S, AHMED Z I, AL-HAQ M I, et al. The possible role of organic acids as allelochemicals in Tamarindus indica L.leaves[J]. Acta Agriculturae Scandinavica(Section B Soil & Plant Science), 2014, 64(6):511-517.
    [12] 朱小琴, 刀国华, 陶益, 等. 典型植物化感物质对铜绿微囊藻生长的抑制效果评价[J]. 中国环境科学, 2020, 40(5):2230-2237.

    ZHU X Q, DAO G H, TAO Y, et al. Evaluation of growth inhibition of typical plant-derived allelochemicals on Microcystis aeruginosa[J]. China Environmental Science, 2020, 40(5):2230-2237.
    [13] ZHOU L, FU Z S, CHEN G F, et al. Research advance in allelopathy effect and mechanism of terrestrial plants in inhibition of Microcystis aeruginosa[J]. Journal of Applied Ecology, 2018, 29(5):1715-1724.
    [14] 林运通, 崔理华, 范远红, 等. 5种湿地沉水植物对模拟污水厂尾水的深度处理[J]. 环境工程学报, 2016, 10(12):6914-6922.

    LIN Y T, CUI L H, FAN Y H, et al. Advanced treatment of simulated tail water of wastewater treatment plant by five submerged plants in wetlands[J]. Chinese Journal of Environmental Engineering, 2016, 10(12):6914-6922.
    [15] 杨皓然. 湖南省常见水生植物的耐污与去污能力比较研究[D]. 长沙:中南林业科技大学, 2016.
    [16] 陈永华, 吴晓芙, 陈明利, 等. 人工湿地污水处理系统冬季植物的筛选与评价[J]. 环境科学, 2010, 31(8):1789-1794.

    CHEN Y H, WU X F, CHEN M L, et al. Selection of winter plant species for wetlands constructed as sewage treatment systems and evaluation of their wastewater purification potentials[J]. Environmental Science, 2010, 31(8):1789-1794.
    [17] HASLER A D, JONES E. Demonstration of the antagonistic action of large aquatic plants on algae and rotifers[J]. Ecology, 1949, 30(3):359-364.
    doi: 10.2307/1932616
    [18] 段书惠. 植物化感物质抑藻及机理的研究[D]. 天津:天津科技大学, 2018.
    [19] 吴旻, 赵群芬. 3种沉水植物在不同污染水体中的生长及其对水质的影响[J]. 生物学杂志, 2015, 32(4):43-47.

    WU M, ZHAO Q F. The growth of three submerged plants in different polluted water and its impact on water quality[J]. Journal of Biology, 2015, 32(4):43-47.
    [20] ZHANG T T, ZHENG C Y, HU W, et al. The allelopathy and allelopathic mechanism of phenolic acids on toxic Microcystis aeruginosa[J]. Journal of Applied Phycology, 2010, 22(1):71-77.
    doi: 10.1007/s10811-009-9429-6
    [21] 张之浩. 富营养化水体原位生态修复中沉水植物的功能研究[D]. 长沙:中南林业科技大学, 2018.
    [22] JIN Z H, ZHUANG Y Y, DAI S G, et al. Isolation and identification of extracts of Eichhornia crassipes and their allelopathic effects on algae[J]. Bulletin of Environmental Contamination and Toxicology, 2003, 71(5):1048-1052.
    doi: 10.1007/s00128-003-0226-7
    [23] 刘晓宇, 傅海燕, 黄国和, 等. 美人蕉有机酸组分对铜绿微囊藻的化感作用[J]. 环境工程学报, 2015, 9(12):5769-5774.

    LIU X Y, FU H Y, HUANG G H, et al. Allelopathic effect of organic acids from Canna indica on Microcystis aeruginosa[J]. Chinese Journal of Environmental Engineering, 2015, 9(12):5769-5774.
    [24] 张庭廷, 郑春艳, 何梅, 等. 脂肪酸类物质的抑藻效应及其构效关系[J]. 中国环境科学, 2009, 29(3):274-279.

    ZHANG T T, ZHENG C Y, HE M, et al. Inhibition on algae of fatty acids and the structure-effect relationship[J]. China Environmental Science, 2009, 29(3):274-279.
    [25] 张庭廷, 何梅, 吴安平, 等. 对羟基苯甲酸对铜绿微囊藻的化感效应以及对鲤鱼的毒性作用[J]. 环境科学学报, 2008, 28(9):1887-1893.

    ZHANG T T, HE M, WU A P, et al. Allelopathic inhibition of p-hydroxybenzoic acid on Microcystis aeruginosa Kueitz with no toxicological effects on Cyprinus carpio Linnaeus[J]. Acta Scientiae Circumstantiae, 2008, 28(9):1887-1893.
    [26] 王立新, 张玲, 张余霞, 等. 黑藻(Hydrilla verticillata)养殖水对铜绿微囊藻(Microcystic aeruginosa)的抑制效应及其机制[J]. 植物生理与分子生物学学报, 2006, 32(6):672-678.

    WANG L X, ZHANG L, ZHANG Y X, et al. The inhibitory effect of Hydrilla verticillata culture water on Microcystic aeruginosa and its mechanism[J]. Journal of Plant Physiology and Molecular Biology, 2006, 32(6):672-678.
    [27] 刘光涛, 周长芳, 孙利芳, 等. 凤眼莲化感物质对铜绿微囊藻、斜生栅藻生长及细胞数相对比例的影响[J]. 环境科学学报, 2011, 31(10):2303-2311.

    LIU G T, ZHOU C F, SUN L F, et al. Effects of Eichhornia crassipes allelochemicals on the growth of two mono-and co-cultured algae Microcystis aeruginosa and Scenedesmus obliquus[J]. Acta Scientiae Circumstantiae, 2011, 31(10):2303-2311.
    [28] 张楠, 孙长虹, 季民. 3种克藻物质对蛋白核小球藻(Chlorella pyrenoidose)的组合抑制效应[J]. 城市环境与城市生态, 2012(1):39-41.

    ZHANG N, SUN C H, JI M. Combined-effect tests of three kinds of allelopathic chemical against Chlorella pyrenoidose[J]. Urban Environment & Urban Ecology, 2012(1):39-41.
    [29] 张玲. 盐京九号水稻(Oryza sativa L.Yanjing 9)抑制铜绿微囊藻(Microcystis aeruginosa)生长作用及其机制的研究[D]. 南京:南京师范大学, 2008.
    [30] 高为, 沈云, 程鑫. 酚类、醇类抑制斜生栅列藻生长的毒性效应[J]. 江苏环境科技, 2001, 14(3):7-8.

    GAO W, SHEN Y, CHENG X. Toxic effect of restrain growth of inclined grate algae by phenol and alcohol[J]. Jiangsu Environmental Science and Technology, 2001, 14(3):7-8.
    [31] 高云霓, 刘碧云, 王静, 等. 苦草(Vallisneria spiralis)释放的酚酸类物质对铜绿微囊藻(Microcystis aeruginosa)的化感作用[J]. 湖泊科学, 2011, 23(5):761-766.
    doi: 10.18307/2011.0514

    GAO Y N, LIU B Y, WANG J, et al. Allelopathic effects of phenolic compounds released by Vallisneria spiralis on Microcystis aeruginosa[J]. Journal of Lake Sciences, 2011, 23(5):761-766. doi: 10.18307/2011.0514
    [32] 张庭廷, 吴安平, 何梅, 等. 酚酸类物质对水华藻类的化感作用及其机理[J]. 中国环境科学, 2007, 27(4):472-476.

    ZHANG T T, WU A P, HE M, et al. The allelopathy and its mechanism of phenolic acids on water-bloom algae[J]. China Environmental Science, 2007, 27(4):472-476.
  • 加载中
计量
  • 文章访问数:  377
  • HTML全文浏览量:  112
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 刊出日期:  2021-11-20

目录

    /

    返回文章
    返回