留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沉积物原位物理洗脱技术对苦草萌发生长的影响

侯绪山 袁静 叶碧碧 吴越 李国宏 吴敬东 储昭升

侯绪山, 袁静, 叶碧碧, 吴越, 李国宏, 吴敬东, 储昭升. 沉积物原位物理洗脱技术对苦草萌发生长的影响[J]. 环境工程技术学报, 2021, 11(3): 514-522. doi: 10.12153/j.issn.1674-991X.20210030
引用本文: 侯绪山, 袁静, 叶碧碧, 吴越, 李国宏, 吴敬东, 储昭升. 沉积物原位物理洗脱技术对苦草萌发生长的影响[J]. 环境工程技术学报, 2021, 11(3): 514-522. doi: 10.12153/j.issn.1674-991X.20210030
HOU Xushan, YUAN Jing, YE Bibi, WU Yue, LI Guohong, WU Jingdong, CHU Zhaosheng. Effects of in situ physical elution treatments of sediment on the germination and growth of Vallisneria natans (Lour.) Hara[J]. Journal of Environmental Engineering Technology, 2021, 11(3): 514-522. doi: 10.12153/j.issn.1674-991X.20210030
Citation: HOU Xushan, YUAN Jing, YE Bibi, WU Yue, LI Guohong, WU Jingdong, CHU Zhaosheng. Effects of in situ physical elution treatments of sediment on the germination and growth of Vallisneria natans (Lour.) Hara[J]. Journal of Environmental Engineering Technology, 2021, 11(3): 514-522. doi: 10.12153/j.issn.1674-991X.20210030

沉积物原位物理洗脱技术对苦草萌发生长的影响

doi: 10.12153/j.issn.1674-991X.20210030
详细信息
    作者简介:

    侯绪山(1995—),男,硕士研究生,主要从事水生植物恢复研究,2467010196@qq.com

    通讯作者:

    储昭升 E-mail: chuzs@craes.org.cn

Effects of in situ physical elution treatments of sediment on the germination and growth of Vallisneria natans (Lour.) Hara

More Information
    Corresponding author: CHU Zhaosheng E-mail: chuzs@craes.org.cn
  • 摘要: 原位物理洗脱技术是一种应用于修复受污染的沉积物的新兴技术,但沉积物洗脱处理后对沉水植物萌发生长的影响尚不明确。通过模拟原位空气洗脱与原位水力洗脱2种典型原位物理洗脱技术,处理富含有机质的沉积物,研究洗脱对苦草萌发和生长指标的影响,以及洗脱后沉积物的理化性质的变化。结果表明:2种方式洗脱后沉积物中苦草种子的萌发率、萌发速度以及幼苗的株高、鲜质量、根数、叶数等指标均优于未洗组,其中水力洗脱后沉积物中苦草的萌发生长状况最好,萌发率是未洗组的2.9倍,株高和根数分别是未洗组的2.29和4.76倍;物理洗脱后,沉积物中氨氮($NH_{4}^{-}$-N)与酸可挥发性硫化物(AVS)等还原性物质浓度分别下降34.15%~35.19%和7.67%~44.89%,有机质浓度下降70.04%~77.90%,表层(0~5 cm)沉积物由强还原状态(ORP<-350 mV)改善至弱还原状态(ORP为-200~-100 mV);此外,沉积物中大粒径(50~2 000 μm)颗粒占比增至89.02%~92.84%,有利于上覆水中的O2向沉积物中扩散,促进苦草的萌发生长。原位物理洗脱尤其是水力洗脱后,沉积物的理化条件更有利于苦草的萌发生长。

     

  • [1] 邱东茹, 吴振斌. 武汉东湖水生植物生态学研究:Ⅲ.沉水植被重建的可行性研究[J]. 长江流域资源与环境, 1998, 7(1):42-48.

    QIU D R, WU Z B. Ecological studies on aquatic macrophytes in lake Donghu of Wuhan:Ⅲ.feasibility for rehabilitation of submerged macrophytes in the lake[J]. Resources and Environment in the Yangtza Basin, 1998, 7(1):42-48.
    [2] 严国安, 马剑敏, 邱东茹, 等. 武汉东湖水生植物群落演替的研究[J]. 植物生态学报, 1997, 21(4):319-327.
    pmid: 52A25DEC-3609-4EA0-8992-64E8FF037E43

    YAN G A, MA J M, QIU D R, et al. Succession and species replacement of aquatic plant community in East Lake[J]. Acta Phytoecologica Sinica, 1997, 21(4):319-327. pmid: 52A25DEC-3609-4EA0-8992-64E8FF037E43
    [3] 徐德瑞, 周杰, 张建华, 等. 东太湖沉水植物现状及影响因子分析[J]. 水电能源科学, 2020, 38(4):64-67.

    XU D R, ZHOU J, ZHANG J H, et al. Status of submerged plants and its influencing factors in east Lake Taihu[J]. Water Resources and Power, 2020, 38(4):64-67.
    [4] 王琦, 高晓奇, 肖能文, 等. 滇池沉水植物的分布格局及其水环境影响因子识别[J]. 湖泊科学, 2018, 30(1):157-170.
    doi: 10.18307/2018.0116

    WANG Q, GAO X Q, XIAO N W, et al. Distribution pattern of submerged macrophytes and its influencing factors of water environment in Lake Dianchi[J]. Journal of Lake Sciences, 2018, 30(1):157-170. doi: 10.18307/2018.0116
    [5] LAI W L, ZHANG Y, CHEN Z H. Radial oxygen loss,photosynthesis,and nutrient removal of 35 wetland plants[J]. Ecological Engineering, 2012, 39:24-30.
    doi: 10.1016/j.ecoleng.2011.11.010
    [6] SOANA E, NALDI M, BARTOLI M. Effects of increasing organic matter loads on pore water features of vegetated ( Vallisneria spiralis L.) and plant-free sediments [J]. Ecological Engineering, 2012, 47:141-145.
    doi: 10.1016/j.ecoleng.2012.06.016
    [7] ZHUANG K, SHI D L, HU Z B, et al. Subcellular accumulation and source of O2- and H2O2 in submerged plant Hydrilla verticillata (L.f.) Royle under $NH_{4}^{+}$-N stress condition[J]. Aquatic Toxicology,2019,207:1-12.
    doi: 10.1016/j.aquatox.2018.11.011
    [8] van ZUIDAM B G, CAZEMIER M M, van GEEST G J, et al. Relationship between redox potential and the emergence of three submerged macrophytes[J]. Aquatic Botany, 2014, 113:56-62.
    doi: 10.1016/j.aquabot.2013.10.005
    [9] TERRADOS J, DUARTE C M, KAMP-NIELSEN L, et al. Are seagrass growth and survival constrained by the reducing conditions of the sediment[J]. Aquatic Botany, 1999, 65(1/2/3/4):175-197.
    doi: 10.1016/S0304-3770(99)00039-X
    [10] van WIJCK C, de GROOT C J, GRILLAS P. The effect of anaerobic sediment on the growth of Potamogeton pectinatus L.:the role of organic matter,sulphide and ferrous iron [J]. Aquatic Botany, 1992, 44(1):31-49.
    doi: 10.1016/0304-3770(92)90079-X
    [11] GNANDI K, HAN S, REZAIE-BOROON M H, et al. Increased bioavailability of mercury in the lagoons of Lomé,Togo: the possible role of dredging[J]. AMBIO, 2011, 40(1):26-42.
    doi: 10.1007/s13280-010-0094-4
    [12] 马永刚, 程瑾, 励彦德, 等. 氮、磷吸附/解吸法确定环保疏浚深度方法探讨:以太原汾河示范段为例[J]. 环境工程技术学报, 2020, 10(3):392-399.

    MA Y G, CHENG J, LI Y D, et al. Discussion on the way of determining environmental dredging depth based on nitrogen and phosphorus adsorption/desorption method:taking the demonstration section of Fenhe River in Taiyuan as an example[J]. Journal of Environmental Engineering Technology, 2020, 10(3):392-399.
    [13] PENG J F, SONG Y H, YUAN P, et al. The remediation of heavy metals contaminated sediment[J]. Journal of Hazardous Materials, 2009, 161(2/3):633-640.
    doi: 10.1016/j.jhazmat.2008.04.061
    [14] 姜霞, 王书航, 张晴波, 等. 污染底泥环保疏浚工程的理念·应用条件·关键问题[J]. 环境科学研究, 2017, 30(10):1497-1504.

    JIANG X, WANG S H, ZHANG Q B, et al. Analysis of concepts,conditions and critical problems in environmental dredging[J]. Research of Environmental Sciences, 2017, 30(10):1497-1504.
    [15] HEDGE L H, KNOTT N A, JOHNSTON E L. Dredging related metal bioaccumulation in oysters[J]. Marine Pollution Bulletin, 2009, 58(6):832-840.
    doi: 10.1016/j.marpolbul.2009.01.020
    [16] ZAWAL A, STĘ PIEŃ E, SZLAUER-ŁUKASZEWSKA A, et al. The influence of dredging of a lowland river (the Krąpiel in NW Poland) on water mite fauna (Acari:Hydrachnidia)[J]. Fundamental and Applied Limnology, 2015, 186(3):217-232.
    doi: 10.1127/fal/2015/0735
    [17] 刘丽香, 韩永伟, 刘辉, 等. 疏浚技术及其对污染水体治理效果的影响[J]. 环境工程技术学报, 2020, 10(1):63-71.

    LIU L X, HAN Y W, LIU H, et al. Dredging technology and its effect on the treatment of polluted water[J]. Journal of Environmental Engineering Technology, 2020, 10(1):63-71.
    [18] PENG W H, LI X M, XIAO S T, et al. Review of remediation technologies for sediments contaminated by heavy metals[J]. Journal of Soils and Sediments, 2018, 18(4):1701-1719.
    doi: 10.1007/s11368-018-1921-7
    [19] 李国宏, 叶碧碧, 吴敬东, 等. 原位洗脱技术对凉水河底泥中氮、磷释放特征的影响[J]. 环境工程学报, 2020, 14(3):671-680.

    LI G H, YE B B, WU J D, et al. Effect of in situ physical elution technology on release features of nitrogen and phosphorus in the sediment of Liangshui River [J]. Chinese Journal of Environmental Engineering, 2020, 14(3):671-680.
    [20] 李国宏, 叶碧碧, 吴敬东, 等. 底泥原位洗脱过程中氮磷含量与形态变化特征[J]. 环境科学研究, 2020, 33(2):392-401.

    LI G H, YE B B, WU J D, et al. Changing characteristics on contents and forms of nitrogen and phosphorus in sediment during in situ physical elution [J]. Research of Environmental Sciences, 2020, 33(2):392-401.
    [21] 杜海明, 余增亮, 吴敬东, 等. 受污染水体底泥洗脱原位置换的方法及其清污设备:CN102503005A[P].2012-06-20.
    [22] 左进城, 李秀玲, 张鹏, 等. 吲哚乙酸和激动素对苦草种子萌发和幼苗生长的影响[J]. 北方园艺, 2014(23):53-56.

    ZUO J C, LI X L, ZHANG P, et al. Effect of IAA and KT on seed germination and seedling growth of Vallisneria spiralis [J]. Northern Horticulture, 2014(23):53-56.
    [23] DASB. Principles of geotechnical engineering[M]. Stamford: Cengage Learning, 2013.
    [24] 储昭升, 刘文新, 汤鸿霄. 官厅水库-永定河沉积物中AVS-SEM的分析[J]. 环境化学, 2003, 22(4):313-317.

    CHU Z S, LIU W X, TANG H X. Analysis of avs-sem in the sediments of Guanting reservoir and Yongding River[J]. Environmental Chemistry, 2003, 22(4):313-317.
    [25] ALLEN H E, FU G M, DENG B L. Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments[J]. Environmental Toxicology and Chemistry, 1993, 12(8):1441-1453.
    doi: 10.1002/etc.v12:8
    [26] GREENWOOD M E, MACFARLANE G R. Effects of salinity and temperature on the germination of Phragmites australis, Juncus kraussii,and Juncus acutus:implications for estuarine restoration initiatives[J]. Wetlands, 2006, 26(3):854-861.
    doi: 10.1672/0277-5212(2006)26[854:EOSATO]2.0.CO;2
    [27] 胡小芳, 胡大为, 吴成宝. 土壤透气性及粘土颗粒比表面积与粘土颗粒粒度分布分形维数关系[J]. 土壤通报, 2007, 38(2):215-219.

    HU X F, HU D W, WU C B. Correlation of soil air permeability and specific area with clay particle size distribution fractal value[J]. Chinese Journal of Soil Science, 2007, 38(2):215-219.
    [28] SHEN P F, LI G, LIU J F, et al. Gas permeability and production potential of marine hydrate deposits in South China sea[J]. Energies, 2019, 12(21):4117.
    doi: 10.3390/en12214117
    [29] VERSHININ A V, ROZANOV A G. The platinum electrode as an indicator of redox environment in marine sediments[J]. Marine Chemistry, 1983, 14(1):1-15.
    doi: 10.1016/0304-4203(83)90065-8
    [30] ZHOU Q Y, GAO J Q, ZHANG R M, et al. Ammonia stress on nitrogen metabolism in tolerant aquatic plant: Myriophyllum aquaticum [J]. Ecotoxicology and Environmental Safety, 2017, 143:102-110.
    doi: 10.1016/j.ecoenv.2017.04.016
    [31] ZHU Z J, SONG S Y, YAN Y E, et al. Combined effects of light reduction and ammonia nitrogen enrichment on the submerged macrophyte Vallisneria natans [J]. Marine and Freshwater Research, 2018, 69(5):764.
    doi: 10.1071/MF17146
    [32] ZHU Z J, SONG S Y, LI P S, et al. Growth and physiological responses of submerged plant Vallisneria natans to water column ammonia nitrogen and sediment copper [J/OL]. PeerJ, 2016, 4:e1953.doi: 10.7717/peerj.1953.
    doi: 10.7717/peerj.1953
    [33] 朱伟, 张俊, 赵联芳. 底质中氨氮对沉水植物生长的影响[J]. 生态环境, 2006, 15(5):914-920.

    ZHU W, ZHANG J, ZHAO L F. Effect of ammonia in the sediment on the growth and physiological characteristics of submerged macrophytes[J]. Ecology and Environment, 2006, 15(5):914-920.
    [34] LI T, LI X J, ZHONG H X, et al. Distribution of trace metals and the benthic foraminiferal assemblage as a characterization of the environment in the north Minjiang River Estuary (Fujian,China)[J]. Marine Pollution Bulletin, 2015, 90(1/2):227-241.
    doi: 10.1016/j.marpolbul.2014.10.047
    [35] MANNA M, SWARUP A, WANJARI R, et al. Soil organic matter in a west Bengal Inceptisol after 30 years of multiple cropping and fertilization[J]. Soil Science Society of America Journal, 2006, 70(1):121-129.
    doi: 10.2136/sssaj2005.0180
    [36] 任素梅, 孙林枫. 黄河口海域有机氮的分布特征[J]. 海洋湖沼通报, 1988(2):87-91.

    REN S M, SUN L F. The distribution of organic nitrogen in the estuary of Yellow River[J]. Transactions of Oceanology and Limnology, 1988(2):87-91.
    [37] PARVEEN M, ASAEDA T, RASHID M H. Effect of hydrogen sulfide exposure on the growth,oxidative stress and carbohydrate metabolism of Elodea nuttallii and Egeria densa [J]. Fundamental and Applied Limnology, 2018, 191(1):53-62.
    doi: 10.1127/fal/2017/1046
    [38] PARVEEN M, ASAEDA T, RASHID M H. Biochemical adaptations of four submerged macrophytes under combined exposure to hypoxia and hydrogen sulphide[J/Ol]. PLoS One, 2017, 12(8):e0182691.doi: 10.1371/journal.pone.0182691.
    doi: 10.1371/journal.pone.0182691
    [39] PARVEEN M, ASAEDA T, RASHID M H. Hydrogen sulfide induced growth,photosynthesis and biochemical responses in three submerged macrophytes[J]. Flora, 2017, 230:1-11.
    doi: 10.1016/j.flora.2017.03.005
    [40] 余辉, 张文斌, 卢少勇, 等. 洪泽湖表层底质营养盐的形态分布特征与评价[J]. 环境科学, 2010, 31(4):961-968.

    YU H, ZHANG W B, LU S Y, et al. Spatial distribution characteristics of surface sediments nutrients in Lake Hongze and their pollution status evaluation[J]. Environmental Science, 2010, 31(4):961-968.
  • 加载中
计量
  • 文章访问数:  325
  • HTML全文浏览量:  67
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-31
  • 刊出日期:  2021-05-20

目录

    /

    返回文章
    返回