留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

排水管道沉积物控制的研究进展

黄乃先 齐一凡 金伟

黄乃先, 齐一凡, 金伟. 排水管道沉积物控制的研究进展[J]. 环境工程技术学报, 2021, 11(3): 507-513. doi: 10.12153/j.issn.1674-991X.20210017
引用本文: 黄乃先, 齐一凡, 金伟. 排水管道沉积物控制的研究进展[J]. 环境工程技术学报, 2021, 11(3): 507-513. doi: 10.12153/j.issn.1674-991X.20210017
HUANG Naixian, QI Yifan, JIN Wei. Research progress on the control of sediments in the drainage pipe[J]. Journal of Environmental Engineering Technology, 2021, 11(3): 507-513. doi: 10.12153/j.issn.1674-991X.20210017
Citation: HUANG Naixian, QI Yifan, JIN Wei. Research progress on the control of sediments in the drainage pipe[J]. Journal of Environmental Engineering Technology, 2021, 11(3): 507-513. doi: 10.12153/j.issn.1674-991X.20210017

排水管道沉积物控制的研究进展

doi: 10.12153/j.issn.1674-991X.20210017
详细信息
    作者简介:

    黄乃先(1990—),男,硕士,主要从事排水管道污染物控制和低浓度氨氮选择性吸附研究,neilyo.huang@gmail.com

    通讯作者:

    金伟 E-mail: jinwei21@sina.com

Research progress on the control of sediments in the drainage pipe

More Information
    Corresponding author: JIN Wei E-mail: jinwei21@sina.com
  • 摘要: 排水管道沉积物雨天受冲刷而造成的河湖水体污染,已成为当前我国水环境质量持续改善面临的困境之一。深入了解管道沉积物及其沉积机制对水体污染治理至关重要。综述了管道沉积物的形成与特性,微生物或沉积物中胞外聚合物(extracellular polymeric substance,EPS)的主要组分和相关性质对沉积物抗冲刷特性的影响。结果显示:排水管道沉积物主要是由污水携带的固体颗粒发生沉降而形成,主要包含底层粗颗粒沉积物、有机层和生物膜3类。由于沉积物中富含微生物并可分泌EPS,而EPS的黏性能显著增加管道沉积物的抗冲刷性。通过控制或降解沉积物EPS中的多糖组分,可降低沉积物的抗冲刷性能,有望为控制管道沉积物淤积提供新思路。目前国内外控制管道沉积物淤积的方法主要包括离线和在线水力冲刷或机械清淤。今后的研究方向应着力在真实的排水管网中系统地研究沉积物耐冲刷特性及其影响因素,进而提出更为有效的控制技术。

     

  • [1] 徐祖信, 徐晋, 金伟, 等. 我国城市黑臭水体治理面临的挑战与机遇[J]. 给水排水, 2019, 45(3):1-5.

    XU Z X, XU J, JIN W, et al. Challenges and opportunities of black and odorous water body in the cities of China[J]. Water & Wastewater Engineering, 2019, 45(3):1-5.
    [2] 吴振华. 上海市排水系统放江污染统计分析[D]. 上海: 同济大学, 2015.
    [3] 韩芸, 彭党聪, 许玮, 等. 合流制管道溢流水质分析及特性研究[J]. 西安建筑科技大学学报(自然科学版), 2007(6):834-838.

    HAN Y, PENG D C, XU W, et al. Research on characteristics of combined sewer overflows[J]. Journal of Xi’an University of Architecture & Technology(Natural Science Edition), 2007(6):834-838.
    [4] 高原, 王红武, 张善发, 等. 合流制排水管道沉积物及其模型研究进展[J]. 中国给水排水, 2010, 26(2):15-18.

    GAO Y, WANG H W, ZHANG S F, et al. Current research progress in combined sewer sediments and their models[J]. China Water & Wastewater, 2010, 26(2):15-18.
    [5] CHEBBO G, LAPLACE D, BACHOC A, et al. Technical solutions envisaged in managing solids in combined sewer networks[J]. Water Science and Technology, 1996, 33(9):237-244.
    [6] 徐祖信, 张辰, 李怀正. 我国城市河流黑臭问题分类与系统化治理实践[J]. 给水排水, 2018, 44(10):1-5.
    [7] 崔爽. 合流制管道沉积物中氮和有机物污染特性研究[D]. 北京: 北京建筑大学, 2014.
    [8] 李茂英, 李海燕. 城市排水管道中沉积物及其污染研究进展[J]. 给水排水, 2008, 34(增刊1):88-92.
    [9] 张伟, 余健, 李葳, 等. 广州市排水管道沉积现状研究分析[J]. 给水排水, 2012, 38(7):147-150.
    [10] 徐强强, 李阳, 马黎, 等. 城市雨水管道沉积物氮磷污染溶出特性试验研究[J/OL]. 环境科学研究,doi: 10.13198/j.issn.1001.6929.2020.07.18.
    doi: 10.13198/j.issn.1001.6929.2020.07.18
    [11] CRABTREE R W. Sediments in sewers[J]. Journal of the Institution of Water and Environmental Management, 1989, 3(6):569-578.
    doi: 10.1111/wej.1989.3.issue-6
    [12] AHYERRE M, CHEBBO G. Identification of in-sewer sources of organic solids contributing to combined sewer overflows[J]. Environmental Technology, 2002, 23(9):1063-1073.
    doi: 10.1080/09593332308618353
    [13] ASHLEY R M, CRABTREE R W. Sediment origins,deposition and buildup in combined sewer systems[J]. Water Science and Technology, 1992, 25(8):1-12.
    [14] LAHAV O, SAGIV A, FRIEDLER E. A different approach for predicting H2S(g) emission rates in gravity sewers [J]. Water Research, 2006, 40(2):259-266.
    doi: 10.1016/j.watres.2005.10.026
    [15] HEANEY J P, PITT R, FIELD R. Innovative urban wet-weather flow management systems:EPA/600/R-99/029[R/OL]. Cincinnati,OH:National Risk Management Research Laboratory,Office of Researchand Development,US Environmental Protection Agency,1999[2021-01-12] http://purl.access.gpo.gov/GPO/LPS34527.
    [16] 陈珂莉, 李朋, 金伟, 等. 排水管道沉积物中胞外聚合物的提取及检测方法研究[J]. 中国给水排水, 2018, 34(7):32-36.

    CHEN K L, LI P, JIN W, et al. Extraction and detection method of extracellular polymeric substances (EPS) in sediment of sewage system[J]. China Water & Wastewater, 2018, 34(7):32-36.
    [17] 陈珂莉. 微生物作用对排水管道沉积物冲刷特性影响研究[D]. 上海: 同济大学, 2017.
    [18] OMS C, GROMAIRE M C, CHEBBO G. In situ observation of the water-sediment interface in combined sewers,using endoscopy [J]. Water Science and Technology, 2003, 47(4):11-18.
    [19] ROCHER V, GARNAUD S, MOILLERON R, et al. Hydrocarbon pollution fixed to combined sewer sediment:a case study in Paris[J]. Chemosphere, 2004, 54(7):795-804.
    doi: 10.1016/j.chemosphere.2003.10.011
    [20] ROCHER V, AZIMI S, MOILLERON R, et al. Hydrocarbons and heavy metals in the different sewer deposits in the ‘Le Marais’ catchment(Paris,France):stocks,distributions and origins[J]. Science of the Total Environment, 2004, 323(1/2/3):107-122.
    doi: 10.1016/j.scitotenv.2003.10.010
    [21] TAIT S J, RUSHFORTH P J, SAUL A J. A laboratory study of the erosion and transport of cohesive-like sediment mixtures in sewers[J]. Water Science and Technology, 1998, 37(1):163-170.
    doi: 10.2166/wst.1998.0040
    [22] CHEN G H, LEUNG D H W, HUNG J C. Biofilm in the sediment phase of a sanitary gravity sewer[J]. Water Research, 2003, 37(11):2784-2788.
    doi: 10.1016/S0043-1354(03)00083-6
    [23] VOLLERTSEN J, HVITVED-JACOBSEN T. Resuspension and oxygen uptake of sediments in combined sewers[J]. Urban Water, 2000, 2(1):21-27.
    doi: 10.1016/S1462-0758(00)00036-4
    [24] BLACK K S, TOLHURST T J, PATERSON D M, et al. Working with natural cohesive sediments[J]. Journal of Hydraulic Engineering, 2002, 128(1):2-8.
    doi: 10.1061/(ASCE)0733-9429(2002)128:1(2)
    [25] FANG H W, SHANG Q Q, CHEN M H, et al. Changes in the critical erosion velocity for sediment colonized by biofilm[J]. Sedimentology, 2014, 61(3):648-659.
    doi: 10.1111/sed.2014.61.issue-3
    [26] TOLHURST T J, CONSALVEY M, PATERSON D M. Changes in cohesive sediment properties associated with the growth of a diatom biofilm[J]. Hydrobiologia, 2008, 596(1):225-239.
    doi: 10.1007/s10750-007-9099-9
    [27] SECO I, VALENTIN M G, SCHELLART A, et al. Erosion resistance and behaviour of highly organic in-sewer sediment[J]. Water Science and Technology, 2014, 69(3):672-679.
    doi: 10.2166/wst.2013.761
    [28] LIU Y, TAY J H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge[J]. Water Research, 2002, 36(7):1653-1665.
    doi: 10.1016/S0043-1354(01)00379-7
    [29] TAY J H, LIU Q S, LIU Y. The effects of shear force on the formation,structure and metabolism of aerobic granules[J]. Applied Microbiology and Biotechnology, 2001, 57(1/2):227-233.
    doi: 10.1007/s002530100766
    [30] ROCHER V, AZIMI S, MOILLERON R, et al. Biofilm in combined sewers:wet weather pollution source and/or dry weather pollution indicator[J]. Water Science and Technology, 2003, 47(4):35-43.
    [31] LIU S, GUNAWAN C, BARRAUD N, et al. Understanding,monitoring,and controlling biofilm growth in drinking water distribution systems[J]. Environmental Science & Technology, 2016, 50(17):8954-8976.
    doi: 10.1021/acs.est.6b00835
    [32] SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances(EPS) of microbial aggregates in biological wastewater treatment systems:a review[J]. Biotechnology Advances, 2010, 28(6):882-894.
    doi: 10.1016/j.biotechadv.2010.08.001
    [33] LASPIDOU C S, RITTMANN B E. A unified theory for extracellular polymeric substances,soluble microbial products,and active and inert biomass[J]. Water Research, 2002, 36(11):2711-2720.
    doi: 10.1016/S0043-1354(01)00413-4
    [34] YU G H, HE P J, SHAO L M. Characteristics of extracellular polymeric substances(EPS) fractions from excess sludges and their effects on bioflocculability[J]. Bioresource Technology, 2009, 100(13):3193-3198.
    doi: 10.1016/j.biortech.2009.02.009
    [35] PALMGREN R, NIELSEN P H. Accumulation of DNA in the exopolymeric matrix of activated sludge and bacterial cultures[J]. Water Science and Technology, 1996, 34(5/6):233-240.
    doi: 10.2166/wst.1996.0555
    [36] JAHN A, GRIEBE T, NIELSEN P H. Composition of pseudomonas putida biofilms:accumulation of protein in the biofilm matrix[J]. Biofouling, 1999, 14(1):49-57.
    doi: 10.1080/08927019909378396
    [37] GEHRKE T, TELEGDI J, THIERRY D, et al. Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching[J]. Applied and Environmental Microbiology, 1998, 64(7):2743-2747.
    doi: 10.1128/AEM.64.7.2743-2747.1998
    [38] FLEMMING H C, WINGENDER J. The biofilm matrix[J]. Nature Reviews Microbiology, 2010, 8(9):623-633.
    doi: 10.1038/nrmicro2415
    [39] FLEMMING H C, NEU T R, WOZNIAK D J. The EPS matrix:the “house of biofilm cells”[J]. Journal of Bacteriology, 2007, 189(22):7945-7947.
    doi: 10.1128/JB.00858-07
    [40] FLEMMING H C, WINGENDER J. Relevance of microbial extracellular polymeric substances(EPSs):Part Ⅰ.structural and ecological aspects[J]. Water Science and Technology, 2001, 43(6):1-8.
    [41] FLEMMING H C, WINGENDER J. Relevance of microbial extracellular polymeric substances(EPSs):Part Ⅱ.technical aspects[J]. Water Science and Technology, 2001, 43(6):9-16.
    [42] 谭煜, 付丽亚, 周鉴. 胞外聚合物(EPS)对污水处理影响的研究进展[J/OL]. 环境工程技术学报,doi: 10.12153/j.issn.1674-991X.20200178.
    doi: 10.12153/j.issn.1674-991X.20200178
    [43] YANG X L, XU T G, CAO P, et al. The viscosity behaviors of bacterial suspensions or extracellular polymeric substances and their effects on aerobic granular sludge[J]. Environmental Science and Pollution Research, 2019, 26(29):30087-30097.
    doi: 10.1007/s11356-019-06012-1
    [44] YOU G X, WANG P F, HOU J, et al. Influence of CeO2 nanoparticles on viscoelastic properties of sludge:role of extracellular polymeric substances [J]. Environmental Research, 2018, 167:34-41.
    doi: 10.1016/j.envres.2018.07.005
    [45] EKSTRAND E M, SVENSSON B H, SAFARIC L, et al. Viscosity dynamics and the production of extracellular polymeric substances and soluble microbial products during anaerobic digestion of pulp and paper mill wastewater sludges[J]. Bioprocess and Biosystems Engineering, 2020, 43(2):283-291.
    doi: 10.1007/s00449-019-02224-4
    [46] LI Z W, LIN L, LIU X, et al. Understanding the role of extracellular polymeric substances in the rheological properties of aerobic granular sludge[J]. Science of the Total Environment, 2020, 705:1359481.1-135948.7.
    [47] MORE T T, YADAV J S S, YAN S, et al. Extracellular polymeric substances of bacteria and their potential environmental applications[J]. Journal of Environmental Management, 2014, 144:1-25.
    doi: 10.1016/j.jenvman.2014.05.010
    [48] 潘国庆. 不同排水体制的污染负荷及控制措施研究[D]. 北京: 北京建筑工程学院, 2007.
    [49] WILLIAMS K J, TAIT S J, ASHLEY R M. In-sewer sedimentation associated with active flow control[J]. Water Science and Technology, 2009, 60(1):55-63.
    doi: 10.2166/wst.2009.286
    [50] 高安礼. 窨井清掏机器人研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.
    [51] 刘志长. 合流制排水管道沉积物的沉积状况及控制技术研究[D]. 长沙: 湖南大学, 2011.
    [52] 聂凤, 熊正为, 黄建洪, 等. 合流制排水系统调蓄池的研究进展[J]. 城市道桥与防洪, 2011(8):313-316.

    NIE F, XIONG Z W, HUANG J H, et al. Research process of storage tanks in combined drainage system[J]. Urban Roads Bridges & Flood Control, 2011(8):313-316.
    [53] DINKELACKERA. Cleaning of sewers[J]. Water Science and Technology, 1992, 25(8):37-46.
  • 加载中
计量
  • 文章访问数:  445
  • HTML全文浏览量:  112
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-18
  • 刊出日期:  2021-05-20

目录

    /

    返回文章
    返回