留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

潜流人工湿地填料及其去除污染物机理研究进展

王明铭 魏俊 黄荣敏 孔令为 李中坚 杨彬

王明铭, 魏俊, 黄荣敏, 孔令为, 李中坚, 杨彬. 潜流人工湿地填料及其去除污染物机理研究进展[J]. 环境工程技术学报, 2021, 11(4): 769-776. doi: 10.12153/j.issn.1674-991X.20200199
引用本文: 王明铭, 魏俊, 黄荣敏, 孔令为, 李中坚, 杨彬. 潜流人工湿地填料及其去除污染物机理研究进展[J]. 环境工程技术学报, 2021, 11(4): 769-776. doi: 10.12153/j.issn.1674-991X.20200199
WANG Mingming, WEI Jun, HUANG Rongmin, KONG Lingwei, LI Zhongjian, YANG Bin. Research progress of subsurface flow constructed wetland filler and its pollutant removal mechanism[J]. Journal of Environmental Engineering Technology, 2021, 11(4): 769-776. doi: 10.12153/j.issn.1674-991X.20200199
Citation: WANG Mingming, WEI Jun, HUANG Rongmin, KONG Lingwei, LI Zhongjian, YANG Bin. Research progress of subsurface flow constructed wetland filler and its pollutant removal mechanism[J]. Journal of Environmental Engineering Technology, 2021, 11(4): 769-776. doi: 10.12153/j.issn.1674-991X.20200199

潜流人工湿地填料及其去除污染物机理研究进展

doi: 10.12153/j.issn.1674-991X.20200199
详细信息
    作者简介:

    王明铭(1990—),男,博士后,主要研究方向为废水深度净化, wang_mm2@ecidi.com

    通讯作者:

    魏俊 E-mail: wei_j@ecidi.com

  • 中图分类号: X703

Research progress of subsurface flow constructed wetland filler and its pollutant removal mechanism

More Information
    Corresponding author: WEI Jun E-mail: wei_j@ecidi.com
  • 摘要: 填料是人工湿地特别是潜流人工湿地床体的主要介质,是湿地物理、化学、生物作用发生的主要载体,对湿地去除污染物的效果有决定性影响。从填料的来源、物理性质、化学组成等方面对实际应用中常见的天然产物类填料、工(农)业副产物类填料和人工制备类填料进行综述,总结了填料对水中污染物的主要去除机理,包括吸附-共沉降、离子交换、缓释碳源-电子供体、氧化还原作用;讨论了潜流湿地填料对氮、磷、重金属污染物的去除能力,并对比了不同填料的污染物去除效果;最后对潜流湿地填料选择和今后相关领域研究方向进行了展望,以期为人工湿地和污水处理技术进一步发展提供相关科学指导和理论依据。

     

  • [1] DOHERTY L, ZHAO Y, ZHAO X, et al. A review of a recently emerged technology:constructed wetland-microbial fuel cells[J]. Water Research, 2015, 85(15):38-45.
    doi: 10.1016/j.watres.2015.08.016
    [2] VOHLA C, KÕIV M, BAVOR H J, et al. Filter materials for phosphorus removal from wastewater in treatment wetlands:a review[J]. Ecological Engineering, 2011, 37(1):70-89.
    doi: 10.1016/j.ecoleng.2009.08.003
    [3] YANG Y, ZHAO Y, LIU R, et al. Global development of various emerged substrates utilized in constructed wetlands[J]. Bioresource Technology, 2018, 261:441-452.
    doi: 10.1016/j.biortech.2018.03.085
    [4] WANG Y, CAI Z, SHENG S, et al. Comprehensive evaluation of substrate materials for contaminants removal in constructed wetlands[J]. Science of the Total Environment, 2020, 701:1-14.
    [5] INGRAO C, FAILLA S, ARCIDIACONO C. A comprehensive review of environmental and operational issues of constructed wetland systems[J]. Current Opinion in Environmental Science & Health, 2020, 13:35-45.
    [6] WU H, ZHANG J, NGO H H, et al. A review on the sustainability of constructed wetlands for wastewater treatment:design and operation[J]. Bioresource Technology, 2015, 175:594-601.
    doi: 10.1016/j.biortech.2014.10.068
    [7] 罗元, 谢坤, 冯弋洋, 等. 镧改性核桃壳生物炭制备及吸附水体磷酸盐性能[J]. 化工进展, 2021, 40(2):1121-1129.

    LUO Y, XIE K, FENG Y Y, et al. Preparation of lanthanum modified walnut shell biochar and adsorption of phosphate from aqueous solutions[J]. Chemical Industry and Engineering Progress, 2021, 40(2):1121-1129.
    [8] CHAZARENC F, BRISSON J, COMEAU Y. Slag columns for upgrading phosphorus removal from constructed wetland effluents[J]. Water Science and Technology, 2007, 56:109-115.
    [9] PENG J, SONG Y, LIU Z, et al. Performance of a novel circular-flow corridor wetland toward the treatment of simulated high-strength swine wastewater[J]. Ecological Engineering, 2012, 49:1-9.
    doi: 10.1016/j.ecoleng.2012.08.005
    [10] 冀泽华, 冯冲凌, 吴晓芙, 等. 人工湿地污水处理系统填料及其净化机理研究进展[J]. 生态学杂志, 2016, 8(35):2234-2243.

    JI Z H, FENG C L, WU X F, et al. Research progress on filler application and purification mechanisms in constructed wetland wastewate treatment system[J]. Chinese Journal of Ecology, 2016, 8(35):2234-2243.
    [11] ZHENG X, DOU J, YUAN J, et al. Removal of Cs+from water and soil by ammonium-pillared montmorillonite/Fe3O4 composite[J]. Journal of Environmental Sciences, 2017, 56(1):12-24.
    doi: 10.1016/j.jes.2016.08.019
    [12] ZHANG L, ZHANG L, LIU Y, et al. Effect of limited artificial aeration on constructed wetland treatment of domestic wastewater[J]. Desalination, 2010, 250(3):915-920.
    doi: 10.1016/j.desal.2008.04.062
    [13] ULYETT J, SAKRABANI R, KIBBLEWHITE M, et al. Impact of biochar addition on water retention,nitrification and carbon dioxide evolution from two sandy loam soils[J]. European Journal of Soil Science, 2014, 65(1):96-104.
    doi: 10.1111/ejss.12081
    [14] CAO W, WANG Y, SUN L, et al. Removal of nitrogenous compounds from polluted river water by floating constructed wetlands using rice straw and ceramsite as substrates under low temperature conditions[J]. Ecological Engineering, 2016, 88:77-81.
    doi: 10.1016/j.ecoleng.2015.12.019
    [15] ZHOU X, LIANG C, JIA L, et al. An innovative biochar-amended substrate vertical flow constructed wetland for low C/N wastewater treatment:impact of influent strengths[J]. Bioresource Technology, 2018, 247:844-850.
    doi: 10.1016/j.biortech.2017.09.044
    [16] LI R, MORRISON L, COLLINS G, et al. Simultaneous nitrate and phosphate removal from wastewater lacking organic matter through microbial oxidation of pyrrhotite coupled to nitrate reduction[J]. Water Research, 2016, 96:32-41.
    doi: 10.1016/j.watres.2016.03.034
    [17] TONG S, RODRIGUEZ-GONZALEZ L, FENG C, et al. Comparison of particulate pyrite autotrophic denitrification(PPAD)and sulfur oxidizing denitrification(SOD)for treatment of nitrified wastewater[J]. Water Science and Technology, 2016, 75(1):239-246.
    doi: 10.2166/wst.2016.502
    [18] YANG Y, CHEN T, MUKHERJEE S, et al. Utilization of iron sulfides for wastewater treatment:a critical review[J]. Reviews in Environmental Science and Bio/Technology, 2017, 16(2):289-308.
    doi: 10.1007/s11157-017-9432-3
    [19] BEZBARUAH A. Performance of a constructed wetland with a sulfur/limestone denitrification section for wastewater nitrogen removal[J]. Environmental Science & Technology, 2003, 37:1690-1697.
    doi: 10.1021/es020912w
    [20] CHYAN J, SENORO D, LIN C, et al. A novel biofilm carrier for pollutant removal in a constructed wetland based on waste rubber tire chips[J]. International Biodeterioration & Biodegradation, 2013, 85:638-645.
    [21] 张修稳, 李锋民, 卢伦, 等. 10种人工湿地填料对磷的吸附特性比较[J]. 水处理技术, 2014, 40(3):49-52.

    ZHANG X W, LI F M, LU L, et al. The comparison of 10 constructed wetland substrate media for P adsorption[J]. Technology of Water Treatment, 2014, 40(3):49-52.
    [22] ZHAO Y Q, BABATUNDE A O, ZHAO X H, et al. Development of alum sludge-based constructed wetland:an innovative and cost effective system for wastewater treatment[J]. Journal of Environmental Science & Health,Part A:Toxic/Hazardous Substances & Environmental Engineering, 2009, 44(8):827-832.
    [23] BUDDHAWONG S, KUSCHK P, MATTUSCH J, et al. Removal of arsenic and zinc using different laboratory model wetland systems[J]. Engineering in Life Sciences, 2005, 5(3):247-252.
    doi: 10.1002/(ISSN)1618-2863
    [24] YADAV A K, KUMAR N, SREEKRISHNAN T R, et al. Removal of chromium and nickel from aqueous solution in constructed wetland:mass balance,adsorption-desorption and FTIR study[J]. Chemical Engineering Journal, 2010, 160(1):122-128.
    doi: 10.1016/j.cej.2010.03.019
    [25] GREENWAY M. Media for enhanced phosphorus removal from secondary wastewater effluent[C]. World Environmental and Water Resources Congress, 2016.
    [26] 卢少勇, 万正芬, 李锋民, 等. 29种湿地填料对氨氮的吸附解吸性能比较[J]. 环境科学研究, 2016, 29(8):1187-1194.

    LU S Y, WAN Z F, LI F M, et al. The comparison of 29 constructed wetland substrate media for N H 4 + -N adsorption [J]. Research of Environmental Sciences, 2016, 29(8):1187-1194.
    [27] MANDER Ü, TEITER S, KUUSEMETS V, et al. Nitrogen and phosphorus budgets in a subsurface flow wastewater treatment wetland[J]. Water, 2003, 61:135-148.
    [28] ALLENDE K L, FLETCHER T D, SUN G. The effect of substrate media on the removal of arsenic,boron and iron from an acidic wastewater in planted column reactors[J]. Chemical Engineering Journal, 2012, 179:119-130.
    doi: 10.1016/j.cej.2011.10.069
    [29] LI L, ZHANG H, WANG D. Influencing factors of limestone sorption and its usage in advanced wastewater treatment for phosphorus removal[J]. International Journal of Nanoscience, 2012, 11:40028.
    [30] BELLIER N, CHAZARENC F, COMEAU Y. Phosphorus removal from wastewater by mineral apatite[J]. Water Research, 2006, 40(15):2965-2971.
    doi: 10.1016/j.watres.2006.05.016
    [31] DAI H, HU F. Phosphorus adsorption capacity evaluation for the substrates used in constructed wetland systems:a comparative study[J]. Polish Journal of Environmental Studies, 2017, 26(3):1003-1010.
    doi: 10.15244/pjoes/66708
    [32] KÕIV M, VOHLA C, MÕTLEP R, et al. The performance of peat-filled subsurface flow filters treating landfill leachate and municipal wastewater[J]. Ecological Engineering, 2009, 35(2):204-212.
    doi: 10.1016/j.ecoleng.2008.04.006
    [33] GRÜNEBERG B, KERN J. Phosphorus retention capacity of iron-ore and blast furnace slag in subsurface flow constructed wetlands[J]. Water Science and Technology, 2001, 44:69-75.
    [34] PAUL A, ANDERSON B. Phosphorus removal by blast furnace slag and cement clinker-flow cell studies for estimation of sorptive capacity for use with constructed treatment wetlands[J]. Water Quality Research Journal of Canada, 2011, 46:300.
    [35] BLANCO I, MOLLE P, SAENZ D M L E, et al. Basic oxygen furnace steel slag aggregates for phosphorus treatment:evaluation of its potential use as a substrate in constructed wetlands[J]. Water Research, 2016, 89(1):355-365.
    doi: 10.1016/j.watres.2015.11.064
    [36] JOHANSSON WESTHOLM L, HYLANDER L. Phosphorus removal from wastewater by filter media:retention and estimated plant availability of sorbed phosphorus[J]. Journal of the Polish Academy of Science, 1998, 458:397-409.
    [37] WENDLING L A, DOUGLAS G B, COLEMAN S, et al. Nutrient and dissolved organic carbon removal from natural waters using industrial by-products[J]. Science of the Total Environment, 2013, 442:63-72.
    doi: 10.1016/j.scitotenv.2012.10.008
    [38] 丁超峰, 陈建平, 盛彦清, 等. 复合赤泥在高浓度含磷废水处理中的应用[J]. 环境工程学报, 2013, 7(12):4643-4647.

    DING C F, CHEN J P, SHENG Y Q, et al. Application of composite red mud in treatment of high phosphate-containing wastewater[J]. Chinese Journal of Environmental Engineering, 2013, 7(12):4643-4647.
    [39] LI Y, LIU C, LUAN Z, et al. Phosphate removal from aqueous solutions using raw and activated red mud and fly ash[J]. Journal of Hazardous Materials, 2006, 137(1):374-383.
    doi: 10.1016/j.jhazmat.2006.02.011
    [40] CHEN Y P, CHENG J, NIU S P, et al. Evaluation of the different filter media in vertical flow stormwater wetland[J]. Desalination & Water Treatment, 2013, 19/20/21:4097-4106.
    [41] 赵文莉, 郝瑞霞, 李斌, 等. 预处理方法对玉米芯作为反硝化固体碳源的影响[J]. 环境科学, 2014, 35(3):987-994.

    ZHAO W L, HAO R X, LI B, et al. Effects of pretreatment methods on corncob as carbon source for denitrification[J]. Environmental Science, 2014, 35(3):987-994.
    [42] 赵民. 基于农业废弃物的人工湿地稳释型固体碳源的制备及释碳性能研究[D]. 青岛:青岛大学, 2019.
    [43] WANG Z, DONG J, LIU L, et al. Screening of phosphate-removing substrates for use in constructed wetlands treating swine wastewater[J]. Ecological Engineering, 2013, 54:57-65.
    doi: 10.1016/j.ecoleng.2013.01.017
    [44] 李文鹏. 改性牡蛎壳除磷吸附剂制备及其除磷性能研究[D]. 大连:大连理工大学, 2014.
    [45] PARK W H, POLPRASERT C. Roles of oyster shells in an integrated constructed wetland system designed for P removal[J]. Ecological Engineering, 2008, 34(1):50-56.
    doi: 10.1016/j.ecoleng.2008.05.014
    [46] 万正芬. 城镇污水处理厂出水中氮磷高效吸附填料的筛选[D]. 青岛:中国海洋大学, 2015.
    [47] YAHYA S, MUSA I, AMJAD H, et al. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon[J]. Dyes and Pigments, 2008, 77(1):16-23.
    doi: 10.1016/j.dyepig.2007.03.001
    [48] DENG C, HUANG L, LIANG Y, et al. Response of microbes to biochar strengthen nitrogen removal in subsurface flow constructed wetlands:microbial community structure and metabolite characteristics[J]. Science of the Total Environment, 2019, 694:133687.
    doi: 10.1016/j.scitotenv.2019.133687
    [49] ABEDI T, MOJIRI A. Constructed wetland modified by biochar/zeolite addition for enhanced wastewater treatment[J]. Environmental Technology & Innovation, 2019, 16:100472.
    [50] 钟乐. 生物炭联合电化学强化人工湿地脱氮除磷的效能及机制研究[D]. 哈尔滨:哈尔滨工业大学, 2019.
    [51] 李妍. 自来水厂污泥陶粒化作为人工湿地填料的研究[D]. 福州:福建师范大学, 2015.
    [52] 孟盼盼. 陶粒基人工湿地处理生活污水及新型陶粒的开发研究[D]. 济南:山东大学, 2015.
    [53] 吴鹏, 陆爽君, 徐乐中, 等. 改性沸石湿地脱氮除磷效能及机制[J]. 环境科学, 2017, 38(2):580-588.

    WU P, LU S J, XU L Z, et al. Efficiency and mechanism of nitrogen and phosphorus removal in modified zeolite wetland[J]. Environmental Sciences, 2017, 38(2):580-588.
  • 加载中
计量
  • 文章访问数:  462
  • HTML全文浏览量:  116
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-13
  • 刊出日期:  2021-07-20

目录

    /

    返回文章
    返回