留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

活性污泥胞外聚合物中蛋白质定量方法的评价

杨凯 张硕 崔康平 黑生强 吕学敏 宋广清 张弦 黄霞

杨凯, 张硕, 崔康平, 黑生强, 吕学敏, 宋广清, 张弦, 黄霞. 活性污泥胞外聚合物中蛋白质定量方法的评价[J]. 环境工程技术学报, 2021, 11(1): 144-150. doi: 10.12153/j.issn.1674-991X.20200046
引用本文: 杨凯, 张硕, 崔康平, 黑生强, 吕学敏, 宋广清, 张弦, 黄霞. 活性污泥胞外聚合物中蛋白质定量方法的评价[J]. 环境工程技术学报, 2021, 11(1): 144-150. doi: 10.12153/j.issn.1674-991X.20200046
YANG Kai, ZHANG Shuo, CUI Kangping, HEI Shengqiang, LÜ Xuemin, SONG Guangqing, ZHANG Xian, HUANG Xia. Evaluation of protein quantification methods for extracellular polymers in activated sludge[J]. Journal of Environmental Engineering Technology, 2021, 11(1): 144-150. doi: 10.12153/j.issn.1674-991X.20200046
Citation: YANG Kai, ZHANG Shuo, CUI Kangping, HEI Shengqiang, LÜ Xuemin, SONG Guangqing, ZHANG Xian, HUANG Xia. Evaluation of protein quantification methods for extracellular polymers in activated sludge[J]. Journal of Environmental Engineering Technology, 2021, 11(1): 144-150. doi: 10.12153/j.issn.1674-991X.20200046

活性污泥胞外聚合物中蛋白质定量方法的评价

doi: 10.12153/j.issn.1674-991X.20200046
详细信息
    作者简介:

    杨凯(1993—),男,硕士,研究方向为膜污染机理,yangkai986155252@163.com

    通讯作者:

    黄霞 E-mail: xhuang@tsinghua.edu.cn

  • 中图分类号: X703.1

Evaluation of protein quantification methods for extracellular polymers in activated sludge

More Information
    Corresponding author: HUANG Xia E-mail: xhuang@tsinghua.edu.cn
  • 摘要: 胞外聚合物(EPS)中蛋白质的准确定量对研究活性污泥性质具有重要意义。为对EPS中蛋白质定量方法的选择提供依据,系统评价了Modified Lowry法、BCA法、Bradford法的测试性能,包括测试范围、准确度、精密度及对EPS中部分组分(Ca2+、Mg2+、还原性糖、腐殖酸)的抗干扰性。结果表明:Modified Lowry法在蛋白质浓度为1~10、10~100 mg/L时与吸光度的线性相关性较好(R2>0.99),BCA法和Bradford法的测试范围较Modified Lowry法更宽;Modified Lowry法的准确度和精密度均最高,BCA法次之,Bradford法最低;Modified Lowry法受Ca2+、Mg2+和还原性糖干扰,BCA法受还原性糖和腐殖酸干扰,Bradford法受腐殖酸的干扰。因此,EPS中蛋白质定量方法的选择应从样品性质(蛋白质浓度范围、干扰物质种类及浓度)和测试方法性能(测试范围、准确度、精密度和抗干扰性)2个方面综合考虑。

     

  • [1] KAVITHA S, JAYASHREE C, ADISH K S, et al. The enhancement of anaerobic biodegradability of waste activated sludge by surfactant mediated biological pretreatment[J]. Bioresource Technology, 2014,168(3):159-166.
    [2] WANG B B, LIU X T, CHEN J M, et al. Composition and functional group characterization of extracellular polymeric substances (EPS) in activated sludge:the impacts of polymerization degree of proteinaceous substrates[J]. Water Research, 2018,129:133-142.
    pmid: 29145083
    [3] CHEN L, TIAN Y, CAO C Q, et al. Interaction energy evaluation of soluble microbial products (SMP) on different membrane surfaces:role of the reconstructed membrane topology[J]. Water Research, 2012,46(8):2693-2704.
    pmid: 22406287
    [4] NI B J, RITTMANN B E, YU H Q. Soluble microbial products and their implications in mixed culture biotechnology[J]. Trends in Biotechnology, 2011,29(9):454-463.
    pmid: 21632131
    [5] KUNACHEVA C, STUCKEY D C. Analytical methods for soluble microbial products (SMP) and extracellular polymers (ECP) in wastewater treatment systems:a review[J]. Water Research, 2014,61(Suppl):1-18.
    [6] ZHANG P, SHEN Y, GUO J S, et al. Extracellular protein analysis of activated sludge and their functions in wastewater treatment plant by shotgun proteomics[J]. Scientific Reports, 2015,5:12041.
    doi: 10.1038/srep12041 pmid: 26160685
    [7] HOU X, LIU S, ZHANG Z. Role of extracellular polymeric substance in determining thehigh aggregation ability of anammox sludge[J]. Water Research, 2015,75:51-62.
    doi: 10.1016/j.watres.2015.02.031 pmid: 25746962
    [8] YIN C, MENG F, CHEN G H. Spectroscopic characterization of extracellular polymeric substances from a mixed culture dominated by ammonia-oxidizing bacteria[J]. Water Research, 2015,68:740-749.
    doi: 10.1016/j.watres.2014.10.046 pmid: 25462778
    [9] WU B, NI B J, HORVAT K, et al. Occurrence state and molecular structure analysis of extracellular proteins with implications to the dewaterability of waste activated sludge[J]. Environmental Science & Technology, 2017,51(16):9235-9243.
    doi: 10.1021/acs.est.7b02861 pmid: 28741346
    [10] FELIPE M O, LEMA J, RAMON M, et al. Role of exopolymeric protein on the settleability of nitrifying sludges[J]. Bioresource Technology, 2004,94(1):43-48.
    doi: 10.1016/j.biortech.2003.11.010 pmid: 15081485
    [11] XIAO B Y, LIU Y, LUO M, et al. Evaluation of the secondary structures of protein in the extracellular polymeric substances extracted from activated sludge by different methods[J]. Journal of Environmental Sciences, 2019(6):128-136.
    [12] BRADSTREET R B. Kjeldahl method for organic nitrogen[J]. Analytical Chemistry, 1954,26(1):185-187.
    [13] HIRT R C. Ultraviolet spectrophotometry[J]. Analytical Chemistry, 1956,28(4):579-583.
    [14] GORNALL A G, BARDWILL C J, DAVID M N. Determination of serum protein by means of the Biuret reaction[J]. Journal of Biological Chemistry, 1949,177:751-766.
    [15] FRØLUND B, GRIEBE T, NIELSEN P H. Enzymatic-activity in the activated-sludge floc matrix[J]. Applied Microbiology and Biotechnology, 1995,43(4):755-761.
    doi: 10.1007/BF00164784 pmid: 7546613
    [16] LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the Folin phenol reagent[J]. Journal of Biological Chemistry, 1951,193(1):265-275.
    [17] SMITH P K, KROHN R I, HERMANSON G T. Measurement of protein using bicinchoninic acid[J]. Analytical Biochemistry, 1985,163(1):76-85.
    [18] BRANFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976,72(1/2):248-254.
    [19] YUAN H X, QIN F, GUO W Q, et al. Oxidative stress and spermatogenesis suppression in the testis of cadmium-treated Bombyx mori larvae[J]. Environmental Science and Pollution Research, 2015,23(6):5763-5770.
    doi: 10.1007/s11356-015-5818-3 pmid: 26585454
    [20] DONG Q, PARKER W, DAGNEW M. Impact of FeCl3,dosing on AnMBR treatment of municipal wastewater[J]. Water Research, 2015,80:281-293.
    doi: 10.1016/j.watres.2015.04.025 pmid: 26005788
    [21] KASZYCKI P, DUBICKA-LISOWSKA A, AUGUSTYNOWICZ J, et al. Callitriche cophocarpa (water starwort) proteome under chromate stress:evidence for induction of a quinone reductase[J]. Environmental Science and Pollution Research, 2018,25(10):1-15.
    [22] SHEN Y X, XIAO K, LIANG P, et al. Improvement on the modified Lowry method against interference of divalent cations in soluble protein measurement[J]. Applied Microbiology and Biotechnology, 2013,97(9):4167-4178.
    doi: 10.1007/s00253-013-4783-3 pmid: 23474613
    [23] FELZ S, VERMEULEN P, van LOOSDRECHT M C M, et al. Chemical characterization methods for the analysis of structural extracellular polymeric substances (EPS)[J]. Water Research, 2019,157(15):201-208.
    [24] LE C C, KUNACHEVA C, STUCKEY D C. “Protein” measurement in biological wastewater treatment systems:a critical evaluation[J]. Environmental Science & Technology, 2016,50(6):3074-3081.
    doi: 10.1021/acs.est.5b05261 pmid: 26893149
    [25] MORENO M R D, SMITH J F, SMITH R V. Mechanism studies of coomassie blue and silver staining of proteins[J]. Journal of Pharmaceutical Sciences, 2010,75(9):907-911.
    doi: 10.1002/jps.2600750919 pmid: 2431134
    [26] HENRIST C, MATHIEU J P, VOGELS C, et al. Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution[J]. Journal of Crystal Growth, 2003,249(1/2):321-330.
    [27] LÜ J, QIU L, QU B. Controlled growth of three morphological structures of magnesium hydroxide nanoparticles by wet precipitation method[J]. Journal of Crystal Growth, 2004,267(3/4):676-684.
    [28] WAFFENSCHMIDT S, JAENICKE L. Assay of reducing sugars in the nanomole range with 2,2’-bicinchoninate[J]. Analytical Biochemistry, 1987,165(2):337-340.
    doi: 10.1016/0003-2697(87)90278-8 pmid: 3425902
    [29] 刘新超, 李俊, 谢丽, 等. 腐殖酸表征方法研究进展[J]. 净水技术, 2009,28(3):6-9.
  • 加载中
计量
  • 文章访问数:  564
  • HTML全文浏览量:  243
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-09
  • 刊出日期:  2021-01-20

目录

    /

    返回文章
    返回