留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

工业聚集区大气VOCs组成特征及对臭氧生成的影响

成翔 赵继峰 肖洋 李思遠 孙友敏 杨雪 张桂芹

成翔, 赵继峰, 肖洋, 李思遠, 孙友敏, 杨雪, 张桂芹. 工业聚集区大气VOCs组成特征及对臭氧生成的影响[J]. 环境工程技术学报, 2020, 10(5): 823-830. doi: 10.12153/j.issn.1674-991X.20190209
引用本文: 成翔, 赵继峰, 肖洋, 李思遠, 孙友敏, 杨雪, 张桂芹. 工业聚集区大气VOCs组成特征及对臭氧生成的影响[J]. 环境工程技术学报, 2020, 10(5): 823-830. doi: 10.12153/j.issn.1674-991X.20190209
CHENG Xiang, ZHAO Jifeng, XIAO Yang, LI Siyuan, SUN Youmin, YANG Xue, ZHANG Guiqin. Composition characteristics of atmospheric VOCs and the influence on ozone formation in an industrial cluster area[J]. Journal of Environmental Engineering Technology, 2020, 10(5): 823-830. doi: 10.12153/j.issn.1674-991X.20190209
Citation: CHENG Xiang, ZHAO Jifeng, XIAO Yang, LI Siyuan, SUN Youmin, YANG Xue, ZHANG Guiqin. Composition characteristics of atmospheric VOCs and the influence on ozone formation in an industrial cluster area[J]. Journal of Environmental Engineering Technology, 2020, 10(5): 823-830. doi: 10.12153/j.issn.1674-991X.20190209

工业聚集区大气VOCs组成特征及对臭氧生成的影响

doi: 10.12153/j.issn.1674-991X.20190209
详细信息
    作者简介:

    成翔(1972—),男,高级工程师,主要从事环境监测方面研究,cheng2003505@163.com

    通讯作者:

    张桂芹 E-mail: zhangguiqin320@163.com

  • 中图分类号: X51

Composition characteristics of atmospheric VOCs and the influence on ozone formation in an industrial cluster area

More Information
    Corresponding author: ZHANG Guiqin E-mail: zhangguiqin320@163.com
  • 摘要: 运用VOCs在线快速连续自动监测系统,检测了淄博市某工业集聚区大气中59种VOCs组分的浓度。结果表明:观测期间VOCs浓度平均值为(130.74±63.42)×10-9(以体积分数计,全文同),其中,烷烃占41.17%±17.67%,烯烃占34.22%±23.79%,含硫有机物占12.20%±20.83%,芳香烃占6.70%±10.39%,炔烃占5.75%±6.49 %;烯烃类VOCs活性最高,尤其是乙烯、顺-2-丁烯和丙烯,其参与大气中光化学反应的能力较强。选取VOCs和O3浓度不同的2个典型时段,用量子化学分子模拟对检出的含硫有机物与羟基自由基(·OH)的前线轨道能量差进行估算,发现甲硫醇、二甲基硫醚和二甲基二硫醚易与·OH发生链引发反应;分析2个时段VOCs组分对O3生成的影响得出,当烯烃和芳香烃浓度不高时,因含硫有机物浓度增加,O3浓度仍处于较高水平,含硫有机物是大气中O3生成的主要贡献物。通过VOCs/NOx判断敏感性发现,观测期间淄博市O3生成对VOCs比较敏感,属于VOCs控制区。

     

  • [1] XUE L K, WANG T, GAO J, et al. Ground-level ozone in four Chinese cities:precursors,regional transport and heterogeneous processes[J]. Atmospheric Chemistry and Physics, 2014,14(23):13175-13188.
    [2] 唐永銮. 大气环境化学[M]. 广州: 中山大学出版社, 1992.
    [3] 李如梅, 武媛媛, 彭林, 等. 朔州市夏季环境空气中VOCs的污染特征及来源解析[J]. 环境化学, 2017,36(5):984-993.

    LI R M, WU Y Y, PENG L, et al. Characteristics and sources apportionment of ambient volatile organic compounds (VOCs) in summer in Shuozhou[J]. Environmental Chemistry, 2017,36(5):984-993.
    [4] 李雷, 李红, 王学中, 等. 广州市中心城区环境空气中挥发性有机物的污染特征与健康风险评价[J]. 环境科学, 2013,34(12):4558-4564.

    LI L, LI H, WANG X Z, et al. Pollution characteristics and health risk assessment of atmospheric VOCs in the Downtown Area of Guangzhou,China[J]. Environmental Science, 2013,34(12):4558-4564.
    [5] 杨笑笑, 汤莉莉, 张运江, 等. 南京夏季市区VOCs特征及O3生成潜势的相关性分析[J]. 环境科学. 2016,37(2):43-51.

    YANG X X, TANG L L, ZHANG Y J, et al. Correlation analysis between characteristics of VOCs and ozone formation potential in summer in Nanjing Urban District[J]. Environmental Science, 2016,37(2):443-451.
    [6] 马永亮, 谭吉华, 贺克斌, 等. 佛山灰霾期挥发性有机物的污染特征[J]. 环境科学, 2011,32(12):3549-3554.

    MA Y L, TAN J H, HE K B, et al. Characteristics of volatile organic compounds during haze episode in Foshan City[J]. Environmental Science, 2011,32(12):3549-3554.
    [7] XUE L, GU R R, WANG T, et al. Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region:analysis of a severe photochemical smog episode[J]. Atmospheric Chemistry & Physics, 2016,16(15):9891-9903.
    [8] CAI C J, GENG F H, TIE X X, et al. Characteristics of ambient volatile organic compounds(VOCs) measured in Shanghai,China[J]. Sensors, 2010,10(8):7843-7862.
    doi: 10.3390/s100807843 pmid: 22163629
    [9] 王红丽. 上海市大气挥发性有机物化学消耗与臭氧生成的关系[J]. 环境科学, 2015,36(9):3159-3167.

    WANG H L. Chemical loss of volatile organic compounds and its impact on the formation of ozone in Shanghai[J]. Environmental Science, 2015,36(9):3159-3167.
    [10] 高爽, 张坤, 高松, 等. 上海城郊地区冬季霾污染事件反应性VOCs物种特征[J]. 环境科学, 2017,38(3):855-866.

    GAO S, ZHANG K, GAO S, et al. Characteristics of reactive VOCs Species during high haze-pollution events in suburban area of Shanghai in winter[J]. Environmental Science, 2017,38(3):855-866.
    [11] WEI W, CHENG S Y, LI G H, et al. Characteristics of volatile organic compounds(VOCs) emitted from a petroleum refinery in Beijing,China[J]. Atmospheric Environment, 2014,89(2):358-366.
    [12] LI L, LI H, ZHANG X M, et al. Pollution characteristics and health risk assessment of benzene homologues in ambient air in the northeastern urban area of Beijing,China[J]. Journal of Environmental Sciences, 2014,26(1):214-223.
    [13] ZHANG Y, MU Y, LIU J, et al. Levels,sources and health risks of carbonyls and BTEX in the ambient air of Beijing,China[J]. Journal of Environmental Sciences, 2012,24(1):124-130.
    [14] 吴方堃, 王跃思, 安俊琳, 等. 北京奥运时段VOCs浓度变化、臭氧产生潜势及来源分析研究[J]. 环境科学, 2010,31(1):10-16.

    WU F K, WANG Y S, AN J L, et al. Study on concentration, ozone production potential and sources of VOCs in the atmosphere of Beijing during Olympics period[J]. Environmental Science, 2010,31(1):10-16.
    [15] 卢学强, 韩萌, 冉靓, 等. 天津中心城区夏季非甲烷有机化合物组成特征及其臭氧产生潜力分析[J]. 环境科学学报, 2011,31(2):373-380.

    LU X Q, HAN M, RAN L, et al. Characteristics of nonmethane organic compounds and their ozone formation potentials in downtown Tiajin in summer[J]. Acta Scientiae Circumstantiae, 2011,31(2):373-380.
    [16] 武蕾丹, 王秀艳, 杨文. 某工业园区VOCs臭氧生成潜势及优控物种[J]. 环境科学, 2018,39(2):511-516.

    WU L D, WANG X Y, YANG W. ozone formation potential and priority species of VOCs in an industrial park[J]. Environmental science, 2018,39(2):511-516.
    [17] 刘泽常, 李娜, 侯鲁健, 等. 济南市环境空气VOCs污染特征及来源识别[J]. 中国环境监测. 2014,30(6):83-88.

    LIU Z C, LI N, HOU L J, et al. Pollution characteristics and source identification of VOCs in ambient air of Ji’nan[J]. China Environmental Monitoring, 2014,30(6):83-88.
    [18] 王占山, 李云婷, 陈添, 等. 北京城区臭氧日变化特征及与前体物的相关性分析[J]. 中国环境科学, 2014,34(12):3001-3008.

    WANG Z S, LI Y T, CHEN T, et al. Analysis on diurnal variation characteristics of ozone and correlations with its precursors in urban atmosphere of Beijing[J]. China Environmental Science, 2014,34(12):3001-3008.
    [19] SILLMAN S. The relation between ozone,NOx and hydrocarbons in urban and polluted rural environments[J]. Atmospheric Environment, 1999,12(33):1821-1845.
    [20] CAI C J, GENG F H, TIE X X, et al. Characteristics of ambient volatile organic compounds (VOCs) measured in Shanghai,China[J]. Sensors, 2010,10(8):7843-7862.
    pmid: 22163629
    [21] ROGER A, JANET A. Atmospheric degradation of volatile organic compounds[J]. Chemical Reviews, 2003,103(12):4605-4638.
    doi: 10.1021/cr0206420 pmid: 14664626
    [22] 李友平, 唐娅, 范忠雨, 等. 成都市大气环境VOCs污染特征及其健康风险评价[J]. 环境科学, 2018,39(2):576-584.

    LI Y P, TANG Y, FAN Z Y, et al. Pollution characteristics and health risk assessment of atmospheric VOCs in Chengdu[J]. Environmental Science, 2018,39(2):576-584.
    [23] 裴冰, 刘娟, 刘焱婧. 某化学工业区挥发性有机物组成特征及大气化学反应活性[J]. 环境监测管理与技术, 2011(增刊):1-6.

    PEI B, LIU J, LIU Y J. The Composition and chemical Reactivity of volatile organic Compounds (VOCs) in a certain chemical industry Park[J]. Environmental Monitoring Management and Technology, 2011(Suppl 1):1-6.
    [24] PING S, AN J, XIN J, et al. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta,China[J]. Atmospheric Research, 2016, 176/177:64-74.
    [25] LEUCHNER M, RAPPENGLÜCK B. VOC source-receptor relationships in Houston during TexAQS-II[J]. Atmos pheric Environment, 2010,44(33):4056-4067.
    [26] YURDAKUL S, CIVAN M, TUNCEL G. Volatile organic compounds in suburban Ankara atmosphere,Turkey:sources and variability[J]. Atmospheric Research, 2013, 120/121:298-311.
    [27] 胡天鹏, 李刚, 毛瑶, 等. 某石油化工园区秋季VOCs污染特征及来源解析[J]. 环境科学, 2018,39(2):517-524.

    HU T P, LI G, MAO Y, et al. Characteristics and source apportionment of VOCs of a petrochemical industrial park during autumn in China[J]. Environmental Science, 2018,39(2):517-524.
    [28] 张桂芹, 李思远, 潘光, 等. 化工企业优控VOCs污染物分析及生成机理[J]. 中国环境科学, 2019,39(4):1380-1389.

    ZHANG G Q, LI S Y, PAN G, et al. Determination and formation mechanism of precedence-controlled VOCs pollutants in chemical plant[J]. China Environmental Science, 2019,39(4):1380-1389.
    [29] 林梦海. 量子化学计算方法与应用[M]. 北京: 科学出版社, 2004.
    [30] FUKUI K. Theory of orientation and stereoselection[M]. Berlin:Springer, 1970: 1-85.
    [31] 吴润润. 典型芳香类化合物大气氧化机理的理论研究[D]. 广州:华南理工大学, 2016.
    [32] 王占山, 李云婷, 安欣欣, 等. 2006—2015年北京市不同地区O3浓度变化[J]. 环境科学, 2018,39(1):1-8.

    WANG Z S, LI Y T, AN X X, et al. Variation of O3 concentration in different areas of Beijing from 2006 to 2015[J]. Environmental Science, 2018,39(1):1-8.
    [33] 李磊, 赵玉梅, 王旭光, 等. 廊坊市夏季臭氧体积分数影响因素及生成敏感性[J]. 环境科学, 2017,38(10):4100-4107.

    LI L, ZHAO Y M, WANG X G, et al. Influence factors and sensitivity of ozone formation in Langfang in the summer[J]. Environmental Science, 2017,38(10):4100-4107.
  • 加载中
计量
  • 文章访问数:  372
  • HTML全文浏览量:  76
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-11
  • 刊出日期:  2020-09-20

目录

    /

    返回文章
    返回