留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

好氧颗粒膜生物污水处理技术研究进展

何航 赵健 孙宁 李江

何航, 赵健, 孙宁, 李江. 好氧颗粒膜生物污水处理技术研究进展[J]. 环境工程技术学报, 2021, 11(1): 163-172. doi: 10.12153/j.issn.1674-991X.20190208
引用本文: 何航, 赵健, 孙宁, 李江. 好氧颗粒膜生物污水处理技术研究进展[J]. 环境工程技术学报, 2021, 11(1): 163-172. doi: 10.12153/j.issn.1674-991X.20190208
HE Hang, ZHAO Jian, SUN Ning, LI Jiang. Research progress of aerobic granular membrane bio-reactor technologies for wastewater treatment[J]. Journal of Environmental Engineering Technology, 2021, 11(1): 163-172. doi: 10.12153/j.issn.1674-991X.20190208
Citation: HE Hang, ZHAO Jian, SUN Ning, LI Jiang. Research progress of aerobic granular membrane bio-reactor technologies for wastewater treatment[J]. Journal of Environmental Engineering Technology, 2021, 11(1): 163-172. doi: 10.12153/j.issn.1674-991X.20190208

好氧颗粒膜生物污水处理技术研究进展

doi: 10.12153/j.issn.1674-991X.20190208
详细信息
    作者简介:

    何航(1991—),男,硕士研究生,主要从事水污染治理技术研究,420651295@qq.com

    通讯作者:

    李江 E-mail: jli82@gzu.edu.cn

  • 中图分类号: X703

Research progress of aerobic granular membrane bio-reactor technologies for wastewater treatment

More Information
    Corresponding author: LI Jiang E-mail: jli82@gzu.edu.cn
  • 摘要: 随着更为严格的污染物排放标准的出台,开发紧凑、高效和耗能较少的污水处理技术成为水处理领域迫切的需求。综述了近年来国内外好氧颗粒膜生物(AGMBR)法在水处理方面的技术现状,简要介绍了各类AGMBR反应系统的组成和污染物去除性能;系统总结了AGMBR法的膜污染特征,提出AGMBR法相较传统MBR法在缓减膜污染方面具有较大的优势,但也存在不可逆污染问题;分别从底物基质与进料方式、群体感应、胞外聚合物和金属离子4个方面分析了影响好氧颗粒稳定性的原因;并对AGMBR法的应用前景进行了展望。

     

  • [1] 白海龙, 陈冠儒, 储开庆. MBR超滤柔性平板膜工艺在国内城镇污水处理领域的应用[J]. 中国建设信息, 2019(1):29-33.
    [2] YANG S F, TAY J H, LIU Y. A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater[J]. Journal of Biotechnology, 2003,106(1):77-86.
    pmid: 14636712
    [3] 姚源, 竺建荣, 唐敏, 等. 好氧颗粒污泥技术处理乡镇污水应用[J]. 环境科学研究, 2018,31(2):379-388.

    YAO Y, ZHU J R, TANG M, et al. Application of aerobic granular sludge technology on treatment of villages and towns sewage[J]. Research of Environmental Sciences, 2018,31(2):379-388.
    [4] ADAV S S, LEE D J, SHOW K Y, et al. Aerobic granular sludge: recent advances[J]. Biotechnology Advances, 2008,26(5):411-423.
    doi: 10.1016/j.biotechadv.2008.05.002 pmid: 18573633
    [5] SHOW K Y, LEE D J, TAY J H. Aerobic granulation: advances and challenges[J]. Applied Biochemistry and Biotechnology, 2012,167(6):1622-1640.
    doi: 10.1007/s12010-012-9609-8 pmid: 22383048
    [6] POL L W H, LOPES S I D C, LETTINGA G, et al. Anaerobic sludge granulation[J]. Water Research, 2004,38(6):1376-1389.
    pmid: 15016515
    [7] QURESHI B. Casebook on the termination of life-sustaining treatment in the care of the dying[J]. Journal of Medical Ethics, 1989,15(4):219.
    [8] MISHIMA K, NAKAMURA M. Self-immobilization of aerobic activated sludge:a pilot study of the aerobic upflow sludge blanket process in municipal sewage treatment[J]. Water Science & Technology, 1991,23:981-990.
    [9] ADAV S S, CHEN M Y, LEE D J, et al. Degradation of phenol by aerobic granules and isolated yeast Candida tropicalis[J]. Biotechnology & Bioengineering, 2007,96(5):844-852.
    pmid: 17001631
    [10] LIU Y, TAY J H. State of the art of biogranulation technology for wastewater treatment[J]. Biotechnology Advances, 2004,22(7):533-563.
    doi: 10.1016/j.biotechadv.2004.05.001 pmid: 15262316
    [11] COMA M, VERAWATY M, PIJUAN M, et al. Enhancing aerobic granulation for biological nutrient removal from domestic wastewater[J]. Bioresource Technology, 2012,103(1):101-108.
    doi: 10.1016/j.biortech.2011.10.014 pmid: 22050837
    [12] MORALES N, FIGUEROA M, FRA-VÁZQUEZ A, et al. Operation of an aerobic granular pilot scale SBR plant to treat swine slurry[J]. Process Biochemistry, 2013,48(8):1216-1221.
    [13] PRONK M, de KREUK M K, de BRUIN B, et al. Full scale performance of the aerobic granular sludge process for sewage treatment[J]. Water Research, 2015,84:207-217.
    doi: 10.1016/j.watres.2015.07.011 pmid: 26233660
    [14] LI X, GAO F, HUA Z, et al. Treatment of synthetic wastewater by a novel MBR with granular sludge developed for controlling membrane fouling[J]. Separation & Purification Technology, 2005,46(1/2):19-25.
    [15] TAY J H, YANG P, ZHUANG W Q, et al. Reactor performance and membrane filtration in aerobic granular sludge membrane bioreactor[J]. Journal of Membrane Science, 2007,304(1/2):24-32.
    [16] TU X, ZHANG S, XU L, et al. Performance and fouling characteristics in a membrane sequence batch reactor (MSBR) system coupled with aerobic granular sludge[J]. Desalination, 2010,261(1/2):191-196.
    [17] WANG Y, ZHONG C, HUANG D, et al. The membrane fouling characteristics of MBRs with different aerobic granular sludges at high flux[J]. Bioresource Technology, 2013,136:488-495.
    doi: 10.1016/j.biortech.2013.03.066 pmid: 23567721
    [18] SÁNCHEZ SÁNCHEZ A, GARRIDO J M, MÉNDEZ R. A comparative study of tertiary membrane filtration of industrial wastewater treated in a granular and a flocculent sludge SBR[J]. Desalination, 2010,250(2):810-814.
    [19] THANH B X, VISVANATHAN C, MATHIEU SPÉRANDIO, et al. Fouling characterization in aerobic granulation coupled baffled membrane separation unit[J]. Journal of Membrane Science, 2008,318(1/2):334-339.
    [20] THANH B X, VISVANATHAN C, BEN AIM R. Fouling characterization and nitrogen removal in a batch granulation membrane bioreactor[J]. International Biodeterioration & Biodegradation, 2013,85:491-498.
    [21] BOUHABILA E H AÏM R B, BUISSON H., Fouling characterisation in membrane bioreactors[J]. Separation & Purification Technology, 2001,22(1/2/3):123-132.
    [22] LI X F, LI Y J, LIU H, et al. Correlation between extracellular polymeric substances and aerobic biogranulation in membrane bioreactor[J]. Separation and Purification Technology, 2008,59(1):26-33.
    [23] 王成端, 黄国富. 好氧颗粒污泥膜生物反应器中的污泥性质与膜污染研究[J]. 环境科学, 2010,31(3):206-212.

    WANG C D, HUANG G F. Sludge performances and membrane pollution in aerobic granular sludge membrane bioreactor[J]. Environmental Science, 2010,31(3):206-212.
    [24] ZHAO X, WANG X C, CHEN Z L, et al. Microbial community structure and pharmaceuticals and personal care products removal in a membrane bioreactor seeded with aerobic granular sludge[J]. Applied Microbiology and Biotechnology, 2015,99(1):425-433.
    pmid: 25099174
    [25] BATHE S, MOHAN T V K, WUERTZ S, et al. Bioaugmentation of a sequencing batch biofilm reactor by horizontal gene transfer[J]. Water Science & Technology, 2004,49(11/12):337-344.
    [26] WUERTZ S, OKABE S, HAUSNER M. Microbial communities and their interactions in biofilm systems: an overview[J]. Water Science & Technology, 2004,49(11/12):327.
    [27] JANG A, YOON Y H, KIM I S, et al. Characterization and evaluation of aerobic granules in sequencing batch reactor[J]. Journal of Biotechnology, 2003,105(1/2):71-82.
    [28] LIU Y, WANG Z W, QIN L, et al. Selection pressure-driven aerobic granulation in a sequencing batch reactor[J]. Applied Microbiology and Biotechnology, 2005,67(1):26-32.
    doi: 10.1007/s00253-004-1820-2
    [29] LIN Y M, LIU Y, TAY J H. Development and characteristics of phosphorus-accumulating microbial granules in sequencing batch reactors[J]. Applied Microbiology & Biotechnology, 2003,62(4):430-435.
    doi: 10.1007/s00253-003-1359-7 pmid: 12783225
    [30] ZHAO X, CHEN Z L, WANG X C, et al. PPCPs removal by aerobic granular sludge membrane bioreactor[J]. Applied Microbiology and Biotechnology, 2014,98(23):9843-9848.
    doi: 10.1007/s00253-014-5923-0 pmid: 25038925
    [31] 周秀琴. 膜分离法的开发应用[J]. 发酵科技通讯, 2003,32(3):39-40.
    [32] 刘忠洲, 续曙光, 李锁定. 微滤,超滤过程中的膜污染与清洗[J]. 水处理技术, 1997,23(4):187-193.

    LIU Z Z, XU S G, LI S D. Membrane fouling and cleaning in UF and MF[J]. Technology of Water Treatment, 1997,23(4):187-193.
    [33] 张恒亮, 段亮, 姚美辰, 等. MBBR-MBR组合工艺处理生活污水效能及膜污染研究[J]. 环境工程技术学报, 2019,9(3):245-251.

    ZHANG H L, DUAN L, YAO M C, et al. Study on performance and membrane fouling of MBBR-MBR combined process for treatment of domestic wastewater[J]. Journal of Environmental Engineering Technology, 2019,9(3):245-251.
    [34] TARDIEU E, GRASMICK A, GEAUGEY V, et al. Influence of hydrodynamics on fouling velocity in a recirculated MBR for wastewater treatment[J]. Journal of Membrane Science, 1999,156(1):131-140.
    [35] SHIN H S, KANG S T. Characteristics and fates of soluble microbial products in ceramic membrane bioreactor at various sludge retention times[J]. Water Research, 2003,37(1):121-127.
    doi: 10.1016/s0043-1354(02)00249-x pmid: 12465793
    [36] LESJEAN B, ROSENBERGER S, LAABS C, et al. Correlation between membrane fouling and soluble/colloidal organic substances in membrane bioreactors for municipal wastewater treatment[J]. Water Science and Technology, 2005,51(6/7):1-8.
    [37] GUO W, NGO H H, LI J. A mini-review on membrane fouling[J]. Bioresource Technology, 2012,122:27-34.
    doi: 10.1016/j.biortech.2012.04.089 pmid: 22608938
    [38] LEE J, AHN W Y, LEE C H. Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor[J]. Water Research, 2001,35(10):2435-2445.
    doi: 10.1016/s0043-1354(00)00524-8 pmid: 11394778
    [39] WISNIEWSKI C, GRASMICK A. Floc size distribution in a membrane bioreactor and consequences for membrane fouling[J]. Colloids & Surfaces A:Physicochemical & Engineering Aspects, 1998,138(2/3):403-411.
    [40] BOUHABILA E H, AÏM R B, BUISSON H. Microfiltration of activated sludge using submerged membrane with air bubbling (application to wastewater treatment)[J]. Desalination, 1998,118(1/2/3):315-322.
    [41] JUANG Y C, ADAV S S, LEE D J, et al. Influence of internal biofilm growth on residual permeability loss in aerobic granular membrane bioreactors[J]. Environmental Science & Technology, 2010,44(4):1267-1273.
    doi: 10.1021/es9024657 pmid: 20102183
    [42] NAGAOKA H. Nitrogen removal by submerged membrane separation activated sludge process[J]. Water Science and Technology, 1999,39(8):107-114.
    [43] WU Z, WANG Z, ZHOU Z, et al. Sludge rheological and physiological characteristics in a pilot-scale submerged membrane bioreactor[J]. Desalination, 2007,212(1/2/3):152-164.
    [44] TAY J H, LIU Q S, LIU Y. Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors[J]. Environmental Technology, 2002,23(8):931-936.
    [45] ZHENG Y M, YU H Q, SHENG G P. Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor[J]. Process Biochemistry, 2005,40(2):645-650.
    [46] TAY T L, MOY Y P, JIANG H L, et al. Rapid cultivation of stable aerobic phenol-degrading granules using acetate-fed granules as microbial seed[J]. Journal of Biotechnology, 2005,115(4):387-395.
    doi: 10.1016/j.jbiotec.2004.09.008 pmid: 15639100
    [47] TSUNEDA S, NAGANO T, HOSHINO T, et al. Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor[J]. Water Research, 2003,37(20):4965-4973.
    doi: 10.1016/j.watres.2003.08.017 pmid: 14604643
    [48] YANG S F, LIU Q S, TAY J H, et al. Growth kinetics of aerobic granules developed in sequencing batch reactors[J]. Letters in Applied Microbiology, 2004,38(2):106-112.
    doi: 10.1111/j.1472-765x.2003.01452.x pmid: 14746540
    [49] KREUK M K D, van LOOSDRECHT M C M. Selection of slow growing organisms as a means for improving aerobic granular sludge stability[J]. Water Science & Technology:A Journal of the International Association on Water Pollution Research, 2004,49(11/12):9.
    [50] KREUK M K D, PRONK M, LOOSDRECHT M C M V. Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures[J]. Water Research, 2005,39(18):4476-4484.
    doi: 10.1016/j.watres.2005.08.031 pmid: 16226290
    [51] BEUN J J, LOOSDRECHT M C M V, HEIJNEN J J. Aerobic granulation in a sequencing batch airlift reactor[J]. Water Research, 2002,36(3):702-712.
    doi: 10.1016/s0043-1354(01)00250-0 pmid: 11831218
    [52] MOSQUERA-CORRAL A, KREUK M K D, HEIJNEN J J, et al. Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor[J]. Water Research, 2005,39(12):2676-2686.
    doi: 10.1016/j.watres.2005.04.065 pmid: 15978652
    [53] MOSQUERA-CORRAL A, MONTRÀS A, HEIJNEN J J, et al. Degradation of polymers in a biofilm airlift suspension reactor[J]. Water Research, 2003,37(3):485-492.
    doi: 10.1016/s0043-1354(02)00309-3 pmid: 12688682
    [54] KREUK M K D, KISHIDA N, TSUNEDA S, et al. Behavior of polymeric substrates in an aerobic granular sludge system[J]. Water Research, 2010,44(20):5929-5938.
    doi: 10.1016/j.watres.2010.07.033 pmid: 20817210
    [55] MARTINS A M P, HEIJNEN J J, LOOSDRECHT M C M V. Effect of feeding pattern on storage and sludge settleability under aerobic conditions[J]. Water Research, 2003,37(11):2555-2570.
    doi: 10.1016/S0043-1354(03)00070-8 pmid: 12753833
    [56] PRONK M, ABBAS B, AL-ZUHAIRY S H K, et al. Effect and behaviour of different substrates in relation to the formation of aerobic granular sludge[J]. Applied Microbiology and Biotechnology, 2015,99(12):5257-5268.
    doi: 10.1007/s00253-014-6358-3 pmid: 25616527
    [57] HORSWILL A R, STOODLEY P, STEWART P S, et al. The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities[J]. Analytical and Bioanalytical Chemistry, 2007,387(2):371-380.
    doi: 10.1007/s00216-006-0720-y pmid: 17047948
    [58] CAMILLI A. Bacterial small-molecule signaling pathways[J]. Science, 2006,311(5764):1113-1116.
    doi: 10.1126/science.1121357 pmid: 16497924
    [59] REVSBECH N P, JORGENSEN B B, BLACKBURN T H, et al. Microelectrode studies of the photosynjournal and O2,H2S,and pH profiles of a microbial matl[J]. Limnology & Oceanography, 1983,28(6):1062-1074.
    [60] JORGENSEN B B, REVSBECH N P, COHEN Y. Photosynjournal and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities[J]. Limnology and Oceanography, 1983,28(6):1075-1093.
    [61] DECHO A W, NORMAN R S, VISSCHER P T. Quorum sensing in natural environments: emerging views from microbial mats[J]. Trends in Microbiology, 2010,18(2):73-80.
    doi: 10.1016/j.tim.2009.12.008 pmid: 20060299
    [62] BAUMGARTNER L K, REID R P, DUPRAZ C, et al. Sulfate reducing bacteria in microbial mats:changing paradigms,new discoveries[J]. Sedimentary Geology, 2006,185(3/4):131-145.
    [63] LEY R E, HARRIS J K, WILCOX J, et al. Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat[J]. Appliedand Environmental Microbiology, 2006,72(5):3685-3695.
    [64] LEE D J, CHEN Y Y, SHOW K Y, et al. Advances in aerobic granule formation and granule stability in the course of storage and reactor operation[J]. Biotechnology Advances, 2010,28(6):919-934.
    doi: 10.1016/j.biotechadv.2010.08.007 pmid: 20728530
    [65] MCSWAIN B S, IRVINE R L, HAUSNER M, et al. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge[J]. Appliedand Environmental Microbiology, 2005,71(2):1051-1057.
    [66] DENG S, WANG L, SU H. Role and influence of extracellular polymeric substances on the preparation of aerobic granular sludge[J]. Journal of Environmental Management, 2016,173:49-54.
    doi: 10.1016/j.jenvman.2016.03.008 pmid: 26974237
    [67] ADAV S S, LEE D J, TAY J H. Extracellular polymeric substances and structural stability of aerobic granule[J]. Water Research, 2008,42(6/7):1644-1650.
    [68] REN T T, LIU L, SHENG G P, et al. Calcium spatial distribution in aerobic granules and its effects on granule structure,strength and bioactivity[J]. Water Research, 2008,42(13):3343-3352.
    doi: 10.1016/j.watres.2008.04.015 pmid: 18514253
    [69] SAJJAD M, KIM K S. Influence of Mg2+ catalyzed granular sludge on flux sustainability in a sequencing batch membrane bioreactor system[J]. Chemical Engineering Journal, 2015,281:404-410.
    [70] JIANG H L, TAY J H, LIU Y, et al. Ca2+augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors[J]. Biotechnology Letters, 2003,25(2):95-99.
    doi: 10.1023/a:1021967914544 pmid: 12882281
    [71] ZHOU D, LIU M, GAO L, et al. Calcium accumulation characterization in the aerobic granules cultivated in a continuous-flow airlift bioreactor[J]. Biotechnology Letters, 2013,35(6):871-877.
    doi: 10.1007/s10529-013-1157-y pmid: 23436127
    [72] LIN Y M, WANG L, CHI Z M, et al. Bacterial alginate role in aerobic granular bio:particles formation and settleability improvement[J]. Separation Science and Technology, 2008,43(7):1642-1652.
  • 加载中
计量
  • 文章访问数:  457
  • HTML全文浏览量:  150
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-10
  • 修回日期:  2020-07-29
  • 刊出日期:  2021-01-20

目录

    /

    返回文章
    返回