留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫化氢催化氧化技术的研究进展

尹梦雪 樊飞跃 赵龙 侯红

尹梦雪, 樊飞跃, 赵龙, 侯红. 硫化氢催化氧化技术的研究进展[J]. 环境工程技术学报, 2020, 10(3): 475-481. doi: 10.12153/j.issn.1674-991X.20190165
引用本文: 尹梦雪, 樊飞跃, 赵龙, 侯红. 硫化氢催化氧化技术的研究进展[J]. 环境工程技术学报, 2020, 10(3): 475-481. doi: 10.12153/j.issn.1674-991X.20190165
YIN Mengxue, FAN Feiyue, ZHAO Long, HOU Hong. Research progress of catalytic oxidation technologies of hydrogen sulfide[J]. Journal of Environmental Engineering Technology, 2020, 10(3): 475-481. doi: 10.12153/j.issn.1674-991X.20190165
Citation: YIN Mengxue, FAN Feiyue, ZHAO Long, HOU Hong. Research progress of catalytic oxidation technologies of hydrogen sulfide[J]. Journal of Environmental Engineering Technology, 2020, 10(3): 475-481. doi: 10.12153/j.issn.1674-991X.20190165

硫化氢催化氧化技术的研究进展

doi: 10.12153/j.issn.1674-991X.20190165
详细信息
    作者简介:

    尹梦雪(1995—)女,硕士研究生,研究方向为硫化氢低温催化氧化材料研发,1072943149@qq.com

    通讯作者:

    侯红 E-mail: houhong@craes.org.cn

  • 中图分类号: X13

Research progress of catalytic oxidation technologies of hydrogen sulfide

More Information
    Corresponding author: HOU Hong E-mail: houhong@craes.org.cn
  • 摘要: 随着经济的发展以及人们对环保的重视,国家层面对硫化氢(H2S)的排放进行了严格的规定。因此,对H2S的去除材料成为研发重点。催化氧化技术是去除H2S的主要方法,目前研究较为深入的催化剂有炭基催化剂(包括无负载活性炭)、金属负载活性炭和金属氧化物催化剂(包括金属氧化物负载催化剂、金属氧化物催化剂和阴离子黏土负载催化剂)。详细介绍了2种催化剂的催化氧化原理、制备方法、去除效果和应用前景:炭材料由于其巨大的比表面积、高孔隙率和可以改性的表面活性位是催化剂或载体的热门选择,而炭基催化剂具有相对较低的操作温度和良好的稳定性,不需要遵循严格的O2和H2S化学计量比,但只能处理低浓度H2S,且要求在较低的空速下进行,催化剂必须定期进行再生;金属氧化物催化剂可以处理高浓度H2S,且在较高的温度(200~300 ℃)下有良好的催化性能,但由于其操作过程需要遵循严格的O2和H2S化学计量比和较高的温度,且再生性能差,因此成本较高;富氮多孔炭和负载碱金属的碱性毫米级中孔炭球(MCS)表现出优异的催化性能。在此基础上,对H2S催化氧化技术的发展方向进行了展望。

     

  • [1] WANG J, WANG L J, FAN H L , et al. Highly porous copper oxide sorbent for H2S capture at ambient temperature[J]. Fuel, 2017,209:329-338.
    [2] LEE S, KIM D . Enhanced adsorptive removal of hydrogen sulfide from gas stream with zinc-iron hydroxide at room temperature[J]. Chemical Engineering Journal, 2019,363:43-48.
    doi: 10.1016/j.cej.2019.01.122
    [3] 任航 . 硫化氢废气处理新方法研究[J]. 化工管理, 2013(14):115.
    [4] LI L, SUN T H, SHU C H , et al. Low temperature H2S removal with 3-D structural mesoporous molecular sieves supported ZnO from gas stream[J]. Journal of Hazardous Materials, 2016,311:142-150.
    doi: 10.1016/j.jhazmat.2016.01.033 pmid: 26970044
    [5] SUN T, SHEN Y, JIA J . Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer[J]. Environmental Science & Technology, 2014,48(4):2263-2272.
    doi: 10.1021/es4048973 pmid: 24456468
    [6] SHI L, YANG K, ZHAO Q , et al. Characterization and mechanisms of H2S and SO2 adsorption by activated carbon[J]. Energy & Fuels, 2015,29(10):6678-6685.
    doi: 10.1080/10962247.2015.1094429 pmid: 26447857
    [7] BAJAJ B, JOH H I, JO S M , et al. Enhanced reactive H2S adsorption using carbon nanofibers supported with Cu/CuxO nanoparticles[J]. Applied Surface Science, 2018,429:253-257.
    doi: 10.1016/j.apsusc.2017.06.280
    [8] HUANG G, HE E, WANG Z , et al. Synjournal and characterization of γ-Fe2O3 for H2S removal at low temperature[J]. Industrial & Engineering Chemistry Research, 2015,54(34):8469-8478.
    [9] CARABINEIRO S A, LOBO L S . Understanding the reactions of CO2,NO,and N2O with activated carbon catalyzed by binary mixtures[J]. Energy & Fuels, 2016,30(9):6881-6891.
    [10] ZHANG X, TANG Y, QU S , et al. H2S-selective catalytic oxidation:catalysts and processes[J]. ACS Catalysis, 2015,5(2):1053-1067.
    [11] SURRA E, NOGUEIRA M C, BERNARDO M , et al. New adsorbents from maize cob wastes and anaerobic digestate for H2S removal from biogas[J]. Waste Management, 2019,94:136-145.
    doi: 10.1016/j.wasman.2019.05.048 pmid: 31279389
    [12] SUN M H, WANG X Z, PAN X , et al. Nitrogen-rich hierarchical porous carbon nanofibers for selective oxidation of hydrogen sulfide[J]. Fuel Processing Technology, 2019,191:121-128.
    doi: 10.1016/j.fuproc.2019.03.020
    [13] LI Y R, LIN Y T, XU Z C , et al. Oxidation mechanisms of H2S by oxygen and oxygen-containing functional groups on activated carbon[J]. Fuel Processing Technology, 2019,189:110-119.
    doi: 10.1016/j.fuproc.2019.03.006
    [14] LEE S, LEE T, KIM D . Adsorption of hydrogen sulfide from gas streams using the amorphous composite of α-FeOOH and activated carbon powder[J]. Industrial & Engineering Chemistry Research, 2017,56(11):3116-3122.
    [15] NURUL N Z, MOHD S M, WAN N R W I , et al. Removal of hydrogen sulfide from a biogas mimic by using impregnated activated carbon adsorbent[J]. PloS One, 2019,14(2):e0211713.
    doi: 10.1371/journal.pone.0211713 pmid: 30753209
    [16] FALCO G D, MONTAGNARO F, BALSAMO M , et al. Synergic effect of Zn and Cu oxides dispersed on activated carbon during reactive adsorption of H2S at room temperature[J]. Microporous and Mesoporous Materials, 2018,257:135-146.
    doi: 10.1016/j.micromeso.2017.08.025
    [17] BALSAMO M, CIMINO S, de FALCO G , et al. ZnO-CuO supported on activated carbon for H2S removal at room temperature[J]. Chemical Engineering Journal, 2016,304:399-407.
    doi: 10.1016/j.cej.2016.06.085
    [18] FAUTEUX-LEFEBVRE C, ABATZOGLOU N, BRAIDY N , et al. Carbon nanofilaments functionalized with iron oxide nanoparticles for in-depth hydrogen sulfide adsorption[J]. Industrial & Engineering Chemistry Research, 2015,54(37):9230-9237.
    [19] TIAN H, WU J, ZHANG W , et al. High performance of Fe nanoparticles/carbon aerogel sorbents for H2S removal[J]. Chemical Engineering Journal, 2017,313:1051-1060.
    doi: 10.1016/j.cej.2016.10.135
    [20] ZHANG Z X, WANG J T, LI W C , et al. Millimeter-sized mesoporous carbon spheres for highly efficient catalytic oxidation of hydrogen sulfide at room temperature[J]. Carbon, 2016,96:608-615.
    pmid: 3050286
    [21] NING P, LIU S J, WANG C , et al. Adsorption-oxidation of hydrogen sulfide on Fe/walnut-shell activated carbon surface modified by NH3-plasma[J]. Journal of Environmental Sciences, 2018,64:216-226.
    doi: 10.1016/j.jes.2017.06.017
    [22] ZHENG X H, LI Y L, ZHANG L Y , et al. Insight into the effect of morphology on catalytic performance of porous CeO2 nanocrystals for H2S selective oxidation[J]. Applied Catalysis B:Environmental, 2019,252:98-110.
    doi: 10.1016/j.apcatb.2019.04.014
    [23] ZHANG F L, ZHANG X, JIANG G X , et al. H2S selective catalytic oxidation over Ce substituted La1-xCexFeO3 perovskite oxides catalyst[J]. Chemical Engineering Journal, 2018,384:831-839.
    [24] YANG C, WANG J, FAN H L . Contributions of tailored oxygen vacancies in ZnO/Al2O3 composites to the enhanced ability for H2S removal at room temperature[J]. Fuel, 2018,215:695-703.
    doi: 10.1016/j.fuel.2017.11.037
    [25] LIU G, JI J, HU P , et al. Efficient degradation of H2S over transition metal modified TiO2 under VUV irradiation:performance and mechanism[J]. Applied Surface Science, 2018,433:329-335.
    doi: 10.1016/j.apsusc.2017.09.257
    [26] SORIANO M D, RODRÍGUEZ-CASTELLÓN E, GARCÍA-GONZÁLEZ E , et al. Catalytic behavior of NaV6O15 bronze for partial oxidation of hydrogen sulfide[J]. Catalysis Today, 2014,238:62-68.
    doi: 10.1016/j.cattod.2014.02.030
    [27] RUIZ-RODRÍGUEZ L, BLASCO T, RODRÍGUEZ-CASTELLÓN E , et al. Partial oxidation of H2S to sulfur on V-Cu-O mixed oxides bronzes[J]. Catalysis Today, 2019,333:237-244.
    doi: 10.1016/j.cattod.2018.07.050
    [28] PALMA V, BARBA D . Low temperature catalytic oxidation of H2S over V2O5/CeO2 catalysts[J]. International Journal of Hydrogen Energy, 2014,39(36):21524-21530.
    doi: 10.1016/j.ijhydene.2014.09.120
    [29] ZHANG X, TANG Y, QIAO N , et al. Comprehensive study of H2S selective catalytic oxidation on combined oxides derived from Mg/Al-V10O28 layered double hydroxides[J]. Applied Catalysis B:Environmental, 2015,176(1):130-138.
    [30] ZHANG F, ZHANG X, HAO Z , et al. Insight into the H2S selective catalytic oxidation performance on well-mixed Ce-containing rare earth catalysts derived from MgAlCe layered double hydroxides[J]. Journal of Hazardous Materials, 2018,342:749-757.
    doi: 10.1016/j.jhazmat.2017.09.014 pmid: 28918293
  • 加载中
计量
  • 文章访问数:  542
  • HTML全文浏览量:  168
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-27
  • 刊出日期:  2020-05-20

目录

    /

    返回文章
    返回