留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮、磷吸附/解吸法确定环保疏浚深度方法探讨——以太原汾河示范段为例

马永刚 程瑾 励彦德 葛高岭 苏召斌

马永刚, 程瑾, 励彦德, 葛高岭, 苏召斌. 氮、磷吸附/解吸法确定环保疏浚深度方法探讨——以太原汾河示范段为例[J]. 环境工程技术学报, 2020, 10(3): 392-399. doi: 10.12153/j.issn.1674-991X.20190057
引用本文: 马永刚, 程瑾, 励彦德, 葛高岭, 苏召斌. 氮、磷吸附/解吸法确定环保疏浚深度方法探讨——以太原汾河示范段为例[J]. 环境工程技术学报, 2020, 10(3): 392-399. doi: 10.12153/j.issn.1674-991X.20190057
MA Yonggang, CHENG Jin, LI Y, e, GE Gaoling. Discussion on the way of determining environmental dredging depth based on nitrogen and phosphorus adsorption/desorption method: taking the demonstration section of Fenhe River in Taiyuan as an example[J]. Journal of Environmental Engineering Technology, 2020, 10(3): 392-399. doi: 10.12153/j.issn.1674-991X.20190057
Citation: MA Yonggang, CHENG Jin, LI Y, e, GE Gaoling. Discussion on the way of determining environmental dredging depth based on nitrogen and phosphorus adsorption/desorption method: taking the demonstration section of Fenhe River in Taiyuan as an example[J]. Journal of Environmental Engineering Technology, 2020, 10(3): 392-399. doi: 10.12153/j.issn.1674-991X.20190057

氮、磷吸附/解吸法确定环保疏浚深度方法探讨——以太原汾河示范段为例

doi: 10.12153/j.issn.1674-991X.20190057
详细信息
    作者简介:

    马永刚(1981—),男,高级工程师,主要从事岩土工程监测、试验检测工作,79436848@qq.com

    通讯作者:

    程瑾 E-mail: chengjin315@sina.com

  • 中图分类号: X524

Discussion on the way of determining environmental dredging depth based on nitrogen and phosphorus adsorption/desorption method: taking the demonstration section of Fenhe River in Taiyuan as an example

More Information
    Corresponding author: CHENG Jin E-mail: chengjin315@sina.com
  • 摘要: 有效疏浚深度是决定疏浚工程造价和治理效果的关键指标,目前我国现行标准规范尚未明确底泥营养盐浓度的标准,对营养盐超标河湖污染底泥的评价和有效疏浚深度确定十分不利。以太原汾河示范段为例,取其代表性柱状样0.3~0.4、0.9~1.0、1.4~1.6、1.9~2.0 m深度的底泥,分别设计Ⅰ类~劣Ⅴ类氨氮( N H 4 + -N)、正磷酸盐( P O 4 3 - )的模拟水和柱状样实际上覆水,进行氮、磷吸附/解吸试验,并分析不同深度底泥氮、磷吸附/解吸特征。结果表明:柱状样1.6 m深度以内底泥中 NH 4 + -N对水体呈释放状态,1.9 m深度底泥对水体中 NH 4 + -N具一定吸附性;1.6 m深度以内底泥中 PO 4 3 - 对水体有释放风险,1.9 m深度底泥对水体中 PO 4 3 - 具一定吸附性;1.3 m深度底泥中总氮(TN)、 NH 4 + -N浓度出现较明显的拐点,1.6 m深度底泥中总磷(TP)浓度出现较明显的拐点。结合底泥对上覆水体影响及底泥中氮、磷浓度垂向变化等因素,确定太原汾河示范段有效疏浚深度为1.6 m。

     

  • [1] 颜昌宙, 范成新, 杨建华 , 等. 湖泊底泥环保疏浚技术研究展望[J]. 环境污染与防治, 2004,26(3):189-192.
    [2] 柏学凯, 雷立改 . 污染底泥处理的研究进展[J]. 宁夏农林科技, 2012,53(10):140-142.

    BAI X K, LEI L G . Research progress on treatment of contaminated sediments[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2012,53(10):140-142.
    [3] 范成新, 张路, 王建军 , 等. 湖泊底泥疏浚对内源释放影响的过程与机理[J]. 科学通报, 2004,49(15):1523-1528.
    [4] 胡小贞, 金相灿, 卢少勇 , 等. 湖泊底泥污染控制技术及其适用性探讨[J]. 中国工程科学, 2009,11(9):28-33.

    HU X Z, JIN X C, LU S Y , et al. Techniques for sediment pollution control and discussion on the applicability in lakes of China[J]. Strategic Study of CAE, 2009,11(9):28-33.
    [5] 金相灿, 胡小贞, 刘倩 , 等. 湖库污染底泥环保疏浚工程环评要点探讨[J]. 环境监控与预警, 2009,1(1):42-46.

    JIN X C, HU X Z, LIU Q , et al. A study on environmental impact assessment of environmental dredging engineering in lakes and reservoirs[J]. Environmental Monitoring and Forewarning, 2009,1(1):42-46.
    [6] 史静, 于秀芳, 夏运生 , 等. 影响富营养化湖泊底泥氮、磷释放的因素[J]. 水土保持通报, 2016,36(3):241-244.

    SHI J, YU X F, XIA Y S , et al. Factors influencing release of nitrogen and phosphorus in eutrophication lake sediment[J]. Bulletin of Soil and Water Conservation, 2016,36(3):241-244.
    [7] 丁涛, 田英杰, 刘进宝 , 等. 杭州市河道底泥重金属污染评价与环保疏浚深度研究[J]. 环境科学学报, 2015,35(3):911-917.

    DING T, TIAN Y J, LIU J B , et al. Assessment of heavy metal status in sediments and environmental dredging depth in Hangzhou[J]. Acta Scientiae Circumstantiae, 2015,35(3):911-917.
    [8] 谢娟, 孙韵, 杨育娟 , 等. 某河流底泥重金属污染地质累积指数评价[J]. 黄金, 2012,33(12):53-55.
    [9] 孙映宏 . 基于Muller地质累积指数法的杭州城区河道底泥重金属污染评价[J]. 浙江水利水电学院学报, 2013,25(1):1-3.

    SUN Y H . Heavy metal pollution evaluation on urban rivers sediment based on muller geo-accumulation index[J]. Journal of Zhejiang Water Conservancy and Hydropower College, 2013,25(1):1-3.
    [10] 徐燕, 李淑芹, 郭书海 , 等. 土壤重金属污染评价方法的比较[J]. 安徽农业科学, 2008,36(11):260-262.

    XU Y, LI S Q, GUO S H , et al. Comparison of assessment methods of heavy metal pollution in soil[J]. Journal of Anhui Agricultural Sciences, 2008,36(11):260-262.
    [11] 张金婷, 孙华 . 内梅罗指数法和模糊综合评价法在土壤重金属污染评价应用中的差异分析[J]. 环境监测管理与技术, 2016,28(4):27-31.

    ZHANG J T, SUN H . Differences of Nemerow index method and fuzzy comprehensive evaluation method in evaluation heavy metal pollution in soil[J]. The Administration and Technique of Environmental Monitoring, 2016,28(4):27-31.
    [12] 赵海涛, 程瑾, 付浩 , 等. 滇池宝丰湾疏浚区底泥污染程度评价及环保疏浚深度的确定[J]. 环境监测管理与技术, 2012,24(2):57-62.

    ZHAO H T, CHENG J, FU H , et al. Assessment of contaminated sediments on Baofeng Bay of Dianchi Lake for calculation of environmental dredging depth[J]. The Administration and Technique of Environmental Monitoring, 2012,24(2):57-62.
    [13] 马婷, 赵大勇, 曾巾 , 等. 南京主要湖泊表层沉积物中重金属污染潜在生态风险评价[J]. 生态与农村环境学报, 2011,27(6):37-42.

    MA T, ZHAO D Y, ZENG J , et al. Potential ecological risk assessment of heavy metal pollutants in surface sediments of the lakes in Nanjing[J]. Journal of Ecology and Rural Environment, 2011,27(6):37-42.
    [14] 赵庆令, 李清彩, 谢江坤 , 等. 应用富集系数法和地累积指数法研究济宁南部区域土壤重金属污染特征及生态风险评价[J]. 岩矿测试, 2015,34(1):129-137.

    ZHAO Q L, LI Q C, XIE J K , et al. Characteristics of soil heavy metal pollution and its ecological risk assessment in south Jining District using methods of enrichment factor and index of geoaccumulation[J]. Rock and Mineral Analysis, 2015,34(1):129-137.
    [15] 王学松, 秦勇 . 徐州城市表层土壤中重金属环境风险测度与源解析[J]. 地球化学, 2006,35(1):88-94.
    doi: 3.0.co;2-i" target="_blank"> 10.1002/1096-911x(200007)35:1<88::aid-mpo18>3.0.co;2-i pmid: 10881017

    WANG X S, QIN Y . Environmental risk and sources of heavy metals in Xuzhou urban topsoil[J]. Geochimica, 2006,35(1):88-94. doi: 10.1002/1096-911x(200007)35:1<88::aid-mpo18>3.0.co;2-i pmid: 10881017
    [16] 生态环境部. 农用地土壤污染标准:GB 15618—2018[S/OL]. (2018-06-28)[2019-03-16]. http://kjs.mee.gov.cn/hjbhbz/bzwb/trhj/trhjzlbz/201807/W020190626595212456114.pdf.
    [17] 住房和城乡建设部. 农用污泥污染物控制标准:GB4284—2018[S/OL]. (2018-05-14)[2019-03-16]. http://www.doc88.com/p-4962506537020.html.
    [18] 生态环境部. 土壤环境质量建设用地土壤污染风险管控标准:GB 36600—2018[S/OL]. (2018-08-01)[2019-03-16]. http://kjs.mee.gov.cn/hjbhbz/bzwb/trhj/trhjzlbz/201807/W020190626596188930731.pdf.
    [19] 黄永泰 . 滇池污染状况及其综合治理[J]. 环境污染与防治, 1999(4):28-31.

    HUANG Y T . Pollution condition of Dianchi and its comprehensive control countermensures[J]. Environmental Pollution & Control, 1999(4):28-31.
    [20] 彭张兴, 张征, 李坚 . 滇池污染状况及对策建议[J]. 环境科学与管理, 2009,34(8):29-32.

    PENG Z X, ZHANG Z, LI J . Pollution status of Dianchi and countermeasure suggestion[J]. Environmental Science and Management, 2009,34(8):29-32.
    [21] 王厚防, 唐翀鹏 . 星云湖环境问题研究进展[J]. 安徽农学通报, 2010,16(11):183-185.
    [22] 许杰玉, 赵晓飞, 吕春英 . 高原湖泊流域水环境特征与污染防治综合整治研究[J]. 环境科学与管理, 2015,40(3):49-52.

    XU J Y, ZHAO X F, LÜ C Y . Characteristics of water environment and comprehensive improvement research of pollution prevention in plateau lake basin[J]. Environmental Science and Management, 2015,40(3):49-52.
    [23] 天津市环境保护局. 中新天津生态城污染水体沉积物修复限值:DB 12/499—2013[S/OL]. (2013-09-29)[2019-03-16]. http://jz.docin.com/p-763713025.html.
    [24] 国家环境保护总局. 展览会用地土壤环境质量评价标准(暂行):HJ350—2007[S/OL]. (2007-06-15)[2019-03-16]. http://www.mee.gov.cn/gkml/zj/gg/200910/t20091021_171728.htm.
    [25] 王雯雯, 姜霞, 王书航 , 等. 太湖竺山湾污染底泥环保疏浚深度的推算[J]. 中国环境科学, 2011,31(6):1013-1018.

    WANG W W, JIANG X, WANG S H , et al. Calculation of environmental dredging depth of contaminated sediments in Zhushan Bay of Taihu Lake[J]. China Environmental Science, 2011,31(6):1013-1018.
    [26] 周小宁, 姜霞, 金相灿 , 等. 太湖梅梁湾沉积物磷的垂直分布及环保疏浚深度的推算[J]. 中国环境科学, 2007,27(4):445-449.

    ZHOU X N, JIANG X, JIN X C , et al. Vertical profiles of phosphorus in the sediments of Meiliang Bay of Taihu Lake in China and calculation of environmental dredging depth[J]. China Environmental Science, 2007,27(4):445-449.
    [27] 吴永红, 胡俊, 金向东 , 等. 滇池典型湖湾沉积物氮磷化学特性及疏浚层推算[J]. 环境科学, 2005,26(4):77-82.

    WU Y H, HU J, JIN X D , et al. Chemical characteristics of nitrogen and phosphorus in the sediments of the typical bays in Dianchi Lake and calculation of their dredging layers[J]. Environmental Science, 2005,26(4):77-82.
    [28] 国家环境保护总局. 地表水环境质量标准:GB 3838—2002[S]. 北京: 中国环境科学出版社, 2002.
    [29] 王圣瑞, 金相灿, 赵海超 , 等. 长江中下游浅水湖泊沉积物对磷的吸附特征[J]. 环境科学, 2005,26(3):38-43.
    doi: 10.1021/es00025a601

    WANG S R, JIN X C, ZHAO H C , et al. Phosphate adsorption characteristics onto the sediments from shallow lakes in the middle and lower reaches of the Yangtze River[J]. Environmental Science, 2005,26(3):38-43. doi: 10.1021/es00025a601
    [30] 姜霞, 王秋娟, 王书航 , 等. 太湖沉积物氮磷吸附解吸特征分析[J]. 环境科学, 2011,32(5):1286-1291.

    JIANG X, WANG Q J, WANG S H , et al. Characteristic analysis of the adsorption/desorption of nitrogen and phosphorus in the sediments of Taihu Lake[J]. Environmental Science, 2011,32(5):1286-1291.
    [31] 王圣瑞, 何宗健, 赵海超 , 等. 洱海表层沉积物中总氮含量及氨氮的释放特征[J]. 环境科学研究, 2013,26(3):256-261.

    WANG S R, HE Z J, ZHAO H C , et al. Studying on total nitrogen content and release characteristics of ammonium in the surface sediment of Erhai Lake[J]. Research of Environmental Sciences, 2013,26(3):256-261.
    [32] 国家环境保护总局. 水和废水监测分析方法[M].4版. 北京: 中国环境科学出版社, 2002.
  • 加载中
计量
  • 文章访问数:  514
  • HTML全文浏览量:  178
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-16
  • 刊出日期:  2020-05-20

目录

    /

    返回文章
    返回